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Active temperature and velocity correlations produced by a swimmer suspension
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The agitation produced in a fluid by a suspension of microswimmers in the low Reynolds number limit is
studied. In this limit, swimmers are modeled as force dipoles all with equal strength. The agitation is characterized
by the active temperature defined, as in kinetic theory, as the mean square velocity, and by the equal-time spatial
correlations. Considering the phase in which the swimmers are homogeneously and isotropically distributed in
the fluid, it is shown that the active temperature and velocity correlations depend on a single scalar correlation
function of the dipole-dipole correlation function. By making a simple medium-range order model, in which
the dipole-dipole correlation function is characterized by a single correlation length k&, Uit is possible to make
quantitative predictions. It is found that the active temperature depends on the system size, scaling as L*~¢
at large correlation lengths L < k; ', while in the opposite limit it saturates in three dimensions and diverges
logarithmically with the system size in two dimensions. In three dimensions the velocity correlations decay as
1/r for small correlation lengths, while at large correlation lengths the transverse correlation function becomes
negative at maximum separation r ~ L /2, an effect that disappears as the system increases in size.
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I. INTRODUCTION

Microscopic swimmer suspensions constitute an interesting
playground for nonequilibrium physics. Energy is continu-
ously taken from the nutrients dissolved in the solution and
used to produce directed motion. By the action of living
organisms, chemical energy is transformed into kinetic energy
in a coherent way, which is then dissipated into heat by
viscosity. As an effect of the mutual interaction, swimmers
present coherent motion with features similar to turbulence
when the suspension is considered as an effective fluid [1,2].

By their motion, swimmers also agitate the fluid and
part of the kinetic energy goes to the fluid motion as well.
Near-field micro-PIV measurements have helped in explaining
the motion of swimmers as well as the perturbations they
produce on the fluid [3,4]. Experiments have shown that most
of the energy generated by individual bacteria dissipates on
the cellular scale and only a small amount is transported to
the mesoscale [5]. The fluid agitation has also been indirectly
investigated experimentally following the motion of tracers,
which show diffusive behavior at long times [6—12]. When
several swimmers are placed in a suspension, they interact by
steric forces and also by the perturbations on the fluid. These
hydrodynamic interactions have also an effect of self-induced
noise in their dynamics [13—16]. The purpose of this article is
to quantify the energy that is stored in the fluid and study how
it is spatially structured.

From a mechanical point of view, swimmers are au-
tonomous objects and, therefore, the total force acting on
them vanishes. If the swimmers are not isodense, or if another
external force acts on them, such as that produced by electric
or magnetic fields, the force balance is achieved by exerting a
net force on the fluid. In these cases, a swimmer suspension
can be considered as a superposition of force monopoles on
the fluid. This is similar to what happens in a sedimenting
suspension, a problem that received considerable attention as
primary calculations indicate that the average fluid velocity
would diverge with system size [17]. Properly regularizing
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the induced and counterflow, it is shown that the mean
velocity is finite [18,19] although its variance is predicted
to be divergent [20]. Nevertheless, under sedimentation the
velocity fluctuations induce unstable density fluctuations that
lead to convective flows, which regularize the variance. For
a review of these results and the subsequent interpretation
of the predicted divergent variance see Ref. [21]. Here, we
focus on the novel effects that appear purely as a result of
the swimmer activity. Therefore, we will not consider external
forces acting on them. Consequently, the net force exerted
on the fluid vanishes as well and, at first order, swimmers
can be modeled as force dipoles. Depending on whether the
dipole is tensile or contractile, the swimmers are classified as
pushers or pullers, respectively [22-24]. In the first category
we find bacteria such as Escherichia coli, while algae such
as Chlamydomonas reinhardtii belong to the second category.
The dipolar approximation accurately describes the far-field
hydrodynamics, but at close distances higher multipoles must
be considered as well as the lubrication layer [3,4]. Near field
yields, as we show in this article, a regular contribution to
the fluid energy while the dipolar part, which we study in
detail, gives contributions with long-range effects that depend
on correlations among swimmers.

The motion of a single swimmer is described by its director
i, which points along its direction of motion. Axisymmetric
swimmers are characterized by a force dipole tensor acting on
the fluid

Sk = oon jhg, €8]
where o( is the dipole intensity, negative for pushers and
positive for pullers. The effect of the force dipole on the
fluid is obtained by solving the Stokes equations, valid at low

Reynolds number. The velocity field produced by a swimmer
located at ry is

u;(r) = Jij(r —ro)Sj, )

©2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.87.053022

C. PARRA-ROJAS AND R. SOTO

where J;j is the gradient of the Oseen tensor along the
direction k. Summation over repeated indices is assumed. Its
Fourier transform can be easily computed from the Stokes
equations (see, for example, Refs. [25,26])

7k ik iky 5 kik;

Jijx(k) = [ dxe T (x) = e i~ 2 ) 3)
expression that is valid in two or three dimensions. As the
swimmer dipole is a symmetric tensor, only the symmetric
part of J;;  is needed, that we call Fjjx = (Jijr + Jix,;)/2. In
Fourier and real space it reads

~ i kik ki

Fij(k) = e kjdik + kidij — 27 , “)
Xi Xj Xk

Fij(x) = Cdx_d<8jk —d=5 ) (5)

where d is the spatial dimension that will be either 2 or 3,

Cy = 1/(4mrn), and C3 = 1/(87n). From these expressions it
is easily verified that its trace over the last two indices vanishes,
indicating that the isotropic part of the force dipole (the
pressure) does not contribute to the velocity field, consistent
with the hypothesis of incompressibility. Therefore, in what
follows we will use, indistinctly, the following expressions for
the velocity field produced by a swimmer:

u;i(r) = Fijr(r —ro)Sjx = Fijr(r —ro)(Sjx — Sudjr/d). (6)

When several swimmers are placed in the fluid, by the lin-
earity of the Stokes equations, the resulting flow field is the sum
of the effects produced by each swimmer. Assuming absence
of correlations among swimmers it has been shown that the
velocity probability distribution function decays as a power
law [11,27,28]. The objective of this article is to compute
some statistical properties of this flow field considering the
effect of correlations among swimmers. Specifically, we will
compute the mean square velocity, which can be associated
to an active temperature of the fluid. Also, the equal-time
spatial correlations will be computed. It will be shown that
if the system is globally isotropic (that is, the swimmers do
not show a collective orientation), both expressions simplify
greatly, depending only on a single scalar correlation function
of the dipolar tensor. Finally, making simple assumptions on
this correlation function, the active temperature and velocity
correlations are obtained.

II. ACTIVE TEMPERATURE

In a suspension of N swimmers placed in a volume V/, the
dipolar density is defined as

N
sje(r) =Y 8 (r—r%) 8%, (7)

a=1

where S, = oonnj is the dipolar tensor of the a'th swimmer
located at r* and we have assumed that all swimmers
have the same dipolar intensity op. In natural suspensions,
swimmers present a distribution of dipolar strengths. Also, for
some swimmers like Chlamydomonas reinhardtii the dipolar
strength oscillates periodically. In Sec. IV we will analyze how
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the results are extended to these cases. In terms of this density,
the velocity field is

ui(r) = /dr’ Fiji(r —r')sjr(r”). ®
\%4

The active temperature, with units of energy, is defined
analogously to kinetic theory, proportional to the mean square
velocity.

Tt = 1lfd (r) ©)
act = aV r (u”(r))
11
= Evfdr/drl fdrz Fijr(r — ) Fijp(r — )
X (8 (r1)Sim (r2)), (10)

where the integral in r averages in space and (...) is an
ensemble average of the possible orientations.

As is usual when considering the discrete elements that
constitute a fluctuating medium, the correlation function of
the dipolar density has two contributions. First, there is a
self term corresponding to the correlation of a swimmer with
itself and there is a cross term given by the correlation of
different swimmers. Using Eq. (7), the correlation function
can be decomposed as

(s j(r)sim(r2)) = <5(l'1 - 1'2)25(1'1 —r%) ?kslam>

+ <Z 8(ri — r*)8(ry — rﬁ)Sj‘kS,‘jn> (11)
aF#p
=8(r1 = r)Ajum + Gjum(ry —r2),  (12)

an expression that defines the constant tensor A and the
correlation tensor G. In the previous expression it has been as-
sumed that the system is spatially homogeneous and therefore
the correlation tensor only depends on the relative distance.
Substituting (12) into (10) gives the active temperature in
terms of the statistical properties of the swimmers. The first
term gives a contribution that depends on the properties of
individual swimmers while the second term depends on their
correlations. We analyze both contributions separately.

A. Self contribution

As seen from (12) the self part deals with the effect of
individual swimmers. Considering the homogeneity of the
suspension, this contribution to the active temperature can be
computed multiplying by N the effect of a single swimmer.
That is,

act dv

202 292
_ poyCy 1 r-n
. /dr e [l—d(—r )} . a3)

where we have defined the swimmer number density
p = N/V and we used the expression (5) for F. The resulting
expression presents a divergence at short distances originated
in neglecting the finite size of the swimmer. We introduce
a finite size cutoff @ comparable to the swimmer size. At

Se. N
eelf _ 7 /dr [F,'jk(l')UOnjnk]2
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this scale, the excluded volume must be considered and other
multipoles should be included as well in the description of the
flow field [3,4]. In two dimensions, the integral also diverges
at long distances. We introduce a large-scale cutoff L equal to
the system size. After these considerations, the result is

2
if _ P9
T = s (/) (14)
in two dimensions and
self pa()Z l (15)

600 a

in three dimensions. Note that in both cases, the active
temperature is dominated by the short scale and therefore a
precise modeling of the near flows is essential to quantitatively
characterize the induced agitation on the fluid.

Higher multipolar terms produce contributions to the veloc-
ity field that decay as 1/r? or faster away from the swimmer.
These terms give finite, size-independent contributions to 7.5
and therefore can be absorbed into a. The same conclusion
can be drawn in the analysis on the contribution of the higher
multipoles in the correlation part of the active temperature.
Hence, in the previous expressions the parameter a takes into
account the swimmer size and the near-field contributions.

B. Correlation contribution

Using the spatial homogeneity of the correlation tensor, its
contribution to the active temperature can be written as

1
T = / dX H j3ym(X)G jiim(X),

7 (16)

where Hjim(X) = fdy Fijk(y)Fim(y — x), that in Fourier
space satisfies Hjy, = F%; Fijm. Using (4) it can be written

ijk
explicitly
~ 1 kikikik,y, 1
ijlm = 4772k2 -4 4 + ﬁ(kjklakm + kjkmakl

+kkk15jm +kkkm5jl):|~ (17)

The correlation tensor (12) is symmetric in each pair of
indices jk and Im as well as under the interchange of the pair
jk with Im. Assuming isotropy, its Fourier transform can be
written in the most general form as

. - Ga(k)
G jum(K) = G1(k)8jx8im + %((Sjkklkm + Simk ki)

+ G3(k)(8jiBim + 8718m + 8jmbu1)
Ga(k) Gs(k)
+ %kjkkklkm + %(ajkklkm + ‘Slmkjkk
+ 6j]kkkm —+ Sjmkkkl + 6k]kjkm + Sknzkjkl)
(13)

in terms of a small number of scalar functions multiplied by
some specific tensors.

Once (18) and (17) are substituted in the expression for
the active temperature (16) there are important algebraic
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simplifications and we obtain the compact expression

Teor d—1 fdk GO(k)

act dQ2m)in? k2’
where @0 = 63 + 65. By dimensional analysis the Fourier
transform of this function can be expressed as Gy(r) =
002 p?g(r), where g is dimensionless. At long distances
swimmers are uncorrelated and g — 1 while at short distances
g — 0 due to the excluded volume. The long distance value of
g implies a Dirac § term in G. However, as usual when theories
with long-range interactions are homogenized [29,30], this
§ term does not contribute, as can be directly checked by
integrating a constant value in (16) in a finite volume and then
taking the volume to infinity. Therefore, the § term in G will
not be considered.

Note that G can be measured in experiments or computed
in simulations of discrete_elements by directly computing
the full contraction G jx;,, Hjim of the dipole-dipole structure
factor.

19)

C. Model with medium-range order

__ The statistical properties of the fluid velocity depend on
Gy, which is a scalar function that characterizes the dipole-
dipole tensor correlations. To our knowledge, this function
has not been measured in swimmer suspensions. The simplest
assumption we can make is that it is characterized by a single
correlation length k; ! that, eventually, can diverge at a critical
point as could happen in a swarming phase or in other phases
with collective order [31]. We consider, therefore, a Lorentzian
model with medium-range order
F0’02

K>+ k3
where I is a measure of the correlation intensity and we have
factored out the dependence on the dipole strength. We will use
this model to analyze the behavior of the active temperature
and velocity correlations as it captures the general properties of
systems with medium-range order for the dipolar parameter.
More accurate models, obtained from experiments, discrete
element simulations [2], or continuous models [35] will change
only qualitatively the picture below if they are characterized
by a single correlation length. More complex models, with
different scaling at large distances, should be worked out
separately.

With the medium-range model (20) the correlation part of
the active temperature is

Golk) = (20)

I'o? koL\?
T = O |1+ (=— 21
5= () ] @
in two dimensions and
I'o? koL
T = D aretan | 222 (22)
37202k 2

in three dimensions, which are shown in Fig. 1.

When the correlation length is much larger compared to the
system size, kgL < 1, as it can happen close to a critical point
when the correlation length diverges, the active temperature
shows important finite size effects. In this regime it goes as

corr ~, y4—d
T3 L.
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FIG. 1. Correlation contribution to the active temperature as a
function of the normalized system size koL /2. The temperatures
are normalized by Ty = I'o?/8mkgn’k3 is two dimensions (top) and
by To = I'o¢/3n%ksn’ko in three dimensions (bottom). The solid
curve is the full expression, while the dashed and dotted curves are
the long and small system size approximations, respectively.

In the opposite limit of short correlation lengths kgL > 1
the behavior in two and three dimensions is different. In
three dimensions, the active temperature goes to a finite value
that depends on the intensity I of the correlations. In two
dimensions, there is a logarithmic dependence with the system
size that, although is weaker than the previously found in
the small correlation length case, can still be observable.
Note that in this regime, in two and three dimensions,
the size dependence has the same scaling as TSI and the
relative intensities of both depend on the degree of correlation
between swimmers.

III. SPATIAL VELOCITY CORRELATIONS

To complement the information provided by the active
temperature, we consider the velocity correlation function to
characterize the spatial structure of the flow

1
Cij(X) = v /dr (u,»(r)uj(r + X)> (23)

Using the isotropy of the system, this tensor can be decom-
posed into the transverse and longitudinal parts as

Cij(x) = CL(x)(a,-,- - %) +aWTE )

where now C; and C; are scalar functions of the distance.
If vortexlike structures developed as in turbulent flows, the
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transverse part would present a negative region at the vortex
characteristic size.

It is direct to obtain a Fourier representation of the
correlation function in terms of the dipole-dipole tensor
correlation function G

Cij(K) = Gt () Hijimn (—K),
where H; jgimn(K) = F%,(K)Fjn () is given explicitly by

(25)

Ejklmn(k) = |:(kkkm6jn8il + kkknajm‘sil + klkm(Sjn(Sik

e
2
+klknajm8ik) - ﬁ(kkkjkmknsil + klkjkmknaik

+ kmkikikiSj 4 knkikikiS )
kikikik ki ko,
Although it looks involved, once this expression and the

tensorial decomposition of G are replaced in (25), algebraic
simplifications take place and we get the extraordinary simple

result
_ kikj
K )

Again, this expression only depends on 60. Then, measuring
this correlation function or by modeling it we can get detailed
information on the flow structure.

We note that in Fourier space the velocity correlations only
have transverse components, consistent with the incompress-
ibility condition that is expressed as C;;k; = 0. However, when
going back to real space both longitudinal and transversal
components appear, given by

(26)

_ Gok
Cij(k) = olk) ( ij (27)

n2k?

_ Gm ikx G0 (k- x)*
O e W(d—2+ s ) (28)
x G k - x)?
G = @) [kt e (1 -83 ) (29)

A. Model with medium-range order

The transverse and longitudinal correlation functions can
be computed using the medium-range order model (20). Here,
we will present results only for the three-dimensional case
as in two dimensions the results show size effects that mask
the spacial dependence. Even in three dimensions, special
consideration must be used as the limit of infinitely long system
does not commute with the limit of long correlation lengths.

We first consider the limiting case koL > 1 when the
integrals in k are unbounded and can be computed analytically,
resulting in

Tog [1 1 (1 1 1 20
—m—%[Fs—s‘e (5*?*5)]’ ¢

o [1 L, el 1 a1
= — ——+e —+ =1
2wtk |26 &1 g &
where £ = kor. We note that both expressions are finite at
short distances and at large distances decay as 1/r. Note that

long-range velocity correlations develop despite the fact that
the orientational correlation of swimmers is of medium range
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FIG. 2. Transverse (top) and longitudinal (bottom) velocity cor-
relations as a function of the point separation x for three corre-
lation lengths [koL = 0.1 (solid line), koL = 2.0 (dotted line) and
koL = 10.0 (dashed line)]. The inset shows the case of kgL — oco.
In the main figures the distances are normalized to the system size L
and in the inset to the correlation length k; .

only. Also, both correlation functions are always positive and
therefore the system does not develop vortexlike structures
(see insets of Fig. 2).

For a finite system we could proceed by imposing a
lower bound 27 /L to the wave vectors as it was done when
computing the active temperature. However, to capture more
precisely the spatial structure we proceed instead by doing
a discrete sum over Fourier modes k = 2w (n,,n,,n;)/L,
excluding the k = O term as it was explained before. The sum
rapidly converges when koL is small, needing only few terms,
while when ko L gets large an increasing number of terms must
be considered to make the sum converge. But in this latter case,
we can use instead the asymptotic expressions (30) and (31).
The results for different values of koL are presented in Fig. 2.
When L is finite, the correlation functions are even in x and
periodic in L and therefore, only the region 0 < x < L/2 is
presented.

When the distance is normalized to the system length, the
curves collapse for small box lengths up to kgL ~ 1 while
for larger sizes the curves separate. The longitudinal velocity
correlation is always positive while the transversal correlation
function becomes null at x/L ~ 0.35, presenting a negative
region from this point up to the maximum separation at
x/L = 0.5. The amplitude of the negative anticorrelation is
small. It becomes smaller when k¢ L increases and, finally, it
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disappears in the limit kgL — oo. As the distance at which
it becomes negative scales directly with the system size, we
would not call it a vortexlike structure, but rather a finite size
effect phenomenon.

IV. DIPOLE STRENGTH VARIABILITY
AND OSCILLATORY DIPOLES

In the previous sections we considered that all swimmers
have the same dipolar strength oy. In natural swimmer
suspensions there is normally a distribution of intensities. It can
be directly verified that, if this is the case, our previous results
remain valid except that everywhere 002 should be replaced by
(0%), where the average is taken over the swimmer distribution.

Also, some swimmers like Chlamydomonas reinhardtii
propel via the periodic motion of a pair of flagella. The
complex flow results from a considering several terms in
the multipolar expansion. However, as mentioned before, the
eventual size effects and velocity correlations are only due
to the dipolar contribution. In this case, the dipolar strength
varies periodically. To show how our expressions are modified
we model this variability as ¢ = o4 + op cos ¢, where the
phase ¢ is assumed to vary linearly with time. The self-
contribution to the active temperature is obtained by simply
replacing 002 by the average (0?) = ai + oé /2. The dipole-
dipole correlation contribution to the active temperature and
velocity correlations depends on the phase correlation between
swimmers (0703) = oﬁ + aé (cos(¢p1 — ¢2)) /2. If swimmers
show no phase correlation, only the average strength intensity
is relevant, while if swimmers show synchronization as for
example in Ref. [32] then the temporal modulation of the
dipolar strength enters into play. Phase synchronization will
show a correlation length that will normally be different
from the orientation correlation length considered in the
previous sections. It is sensible to model in this case the total
dipole-dipole correlation function as a sum of two Lorentzians

FBO'I%
K2+ kg

(32)

From this model, the same analysis as those done in the
previous sections can be performed with similar conclusions,
although the two correlation length scales and the relative
intensities should be considered.

V. CONCLUSION

The fluid agitation produced by an isotropic and homoge-
neous swimmer suspension is investigated in which swimmers
are modeled as force dipoles. Appealing to general properties
of isotropy and homogeneity of the Stokes equations it is
found that generically, the equal-time statistical properties
depend on a single correlation function of the dipole-dipole
correlation function that characterizes the orientational corre-
lation of swimmers. In discrete simulations [2] this function
can be directly computed. Experiments that measure the
swimmer orientation would be desirable, but limitations of
visualizing individual swimmers exist in the bulk of dense
suspensions, while it has been possible to track position and
orientation in dilute bulk suspensions [33] or near surfaces in
quasi-two-dimensional geometries [34]. To our knowledge no
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measurement of the dipole-dipole correlation have been made.
Finally, continuous models need to include the dynamics of
the dipolar tensor as in Ref. [35] as hydrodynamiclike models
for the density and velocity fields only provide insufficient
information.

By making a simple model of this correlation function,
based on a single correlation length, it is shown that the
active temperature presents strong size effects that should
be noticeable in experiments, for example, by measuring
the induced diffusion on tracers or by microparticle image
velocimetry. If confining walls are used, they induce a faster
decay of the velocity fields and the size effects could not
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be observed near walls, but in the bulk they could still
be observable. The velocity correlations do not show the
appearance of coherent structures, except in finite systems,
in which the transverse component is negative for points
separated by half of the system size, but these cannot be
homologated to vortexlike structures.
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