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Intrinsic noise and two-dimensional maps: Quasicycles, quasiperiodicity, and chaos
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We develop a formalism to describe the discrete-time dynamics of systems containing an arbitrary number
of interacting species. The individual-based model, which forms our starting point, is described by a Markov
chain, which in the limit of large system sizes is shown to be very well-approximated by a Fokker-Planck-like
equation, or equivalently by a set of stochastic difference equations. This formalism is applied to the specific case
of two species: one predator species and its prey species. Quasicycles, stochastic cycles sustained and amplified
by the demographic noise, previously found in continuous-time predator-prey models are shown to exist, and
their behavior predicted from a linear noise analysis is shown to be in very good agreement with simulations.
The effects of the noise on other attractors in the corresponding deterministic map, such as periodic cycles,

quasiperiodicity, and chaos, are also investigated.
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I. INTRODUCTION

In a wide variety of disciplines, the mathematical modeling
of population dynamics is a much-used tool. This can be
useful to measure, for instance, the spread of a disease inside
a community, or the abundances of biochemical molecules
in a metabolic process. When setting up such a model, one
is often faced with the choice of whether the model should
depict the individual components present in the system (be
they molecules, animals, or other entities), or simply describe
the population by a macroscopic concentration. A popular
choice is to take a mesoscopic approach, where instead of
tracking each individual one is content to describe the fraction
of individuals of each “species” present in the system [1,2]. The
stochasticity, present in the interactions between individual
elements in the system is, however, retained. Typically, the time
evolution of the population is taken to be a Markov process,
that is, memoryless.

In the formalism described above, time is usually treated as
a continuous variable, and the system can be described by a
master equation [3]. However, there are occasions where it is
preferable to treat time as a discrete variable. This is often done
in ecology, when studying the time evolution of species which
have nonoverlapping generations, or in cases where field data
is only collected at fixed time intervals. Therefore, to describe
the evolution of the system, discrete time is more suitable.
Nevertheless, the mesoscopic, or “individual-based” approach
to modeling, carried out so frequently in continuous-time
systems, has not been developed for discrete-time systems.
Instead, such systems are typically described by deterministic
difference equations, often referred to as “maps” [4]. Or, if
stochasticity is found in the models, it is put in “by hand”
through an additive noise term (see, e.g., Refs. [5-7]), rather
than stemming from the underlying interactions between the
individuals.
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Our recent work has attempted to fill this gap, by devel-
oping a mesoscopic description of discrete-time population
models [8,9], but for systems with only one variable. The
corresponding deterministic description of the system is
recovered in the thermodynamic limit, that is, in the limit
of infinite population size. In this article, we present the
extension of the theory to an arbitrary number of variables,
although the application of the theory will be to a system with
two variables (in what follows, we shall sometimes refer to
systems with d variables as d-dimensional). This extension
is desirable for a number of reasons. Two-dimensional (2D)
discrete-time models are particularly prevalent in ecology,
where they are used to model interactions between two species.
These interactions could take the form of competition between
species, predator-prey, or host-parasitoid dynamics (see, e.g.,
Refs. [10-20]). Furthermore, 2D maps display a greater range
of different behavior than one-dimensional (1D) maps, such
as quasiperiodic attractors. Similar comments apply a fortiori
to higher-dimensional systems.

From a theoretical viewpoint, then, it is interesting to
examine the effects of intrinsic noise in these systems. In
continuous-time systems with dimension greater than one,
it is known that the inclusion of stochasticity in the model
can lead to sustained oscillations which are not predicted
by the deterministic equations [21]. The occurrence of these
oscillations requires that the deterministic model approaches
a stable fixed point via damped oscillations, behavior which
can be anticipated by calculating the eigenvalues of the map’s
Jacobian, evaluated at the fixed point. So, it is interesting to ask
whether such oscillations, often called “quasicycles,” appear
in discrete-time systems.

Discrete-time systems have been frequently used to study
chaotic behavior in a simple setting. In general, two main
routes to chaos are observed in 2D maps, one being a series of
period-doubling bifurcations from a fixed point, already ob-
served in one dimension and generally present in competition
models [10-12]; the other corresponds to a Hopf bifurcation
leading to high-period or quasiperiodic trajectories, which then
further bifurcate into a sequence of periodic states (periodic
windows in the quasiperiodic region) with chaos emerging
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from one of them via period doubling or intermittency [22].
The latter is the case in a wide range of predator-prey and
host-parasite models [13-20]. In the literature, many papers
have been devoted to the effects of noise in chaotic systems,
including the observation that noise can induce chaos. For a
parameter choice where the deterministic map is nonchaotic,
the addition of noise can produce time series which have the
hallmarks of chaos. The idea of noise-induced chaos has been
much studied in the literature for the case of additive noise
(see, e.g., Refs. [6,7]). In a recent article [9] we investigated
the ability of intrinsic noise to cause such a transition. Here
we will do this for the case of 2D maps, and ascertain
in which regions of parameter space this transition could
be seen. An essential point here is that the noise is not
additive: it has a multiplicative structure, the form of which
can only be found by starting from an underlying microscopic
model.

The article will be organized as follows. Section II
introduces the Markov chain theory, which describes the
microscopic process, before presenting the methodology that
yields the mesoscopic description. This takes the form of
a generalization of the Fokker-Planck equation, which can
equivalently be formulated as a stochastic difference equation.
In this section the formalism is presented for an arbitrary num-
ber of dimensions, and some of the technical details have been
placed in the appendices. We then show how a linearization
of the stochastic difference equation can be used to obtain
approximate, analytical predictions of the fluctuations around
various attractors, such as a fixed point or n-cycle. Finally
in Sec. II we derive a theoretical description for the power
spectra of noise-induced oscillations, or “quasicycles,” which
are not predicted by the deterministic theory. Section III shows
some of the results that can be obtained for the case of a map
with a Lotka-Volterra-type dynamics. Here we quantify the
fluctuations around a stable fixed point, as well as reporting
the observation of quasicycles. In this section we also move
beyond the fixed point, to look at the effects of intrinsic
noise around periodic and quasiperiodic attractors. Section IV
examines the ability of noise to induce chaotic behavior for
parameter choices where the deterministic map is nonchaotic.
Section V summarizes the article’s findings, and suggests
avenues for further work.

II. THE MESOSCOPIC DERIVATION

In previous articles [8,9] we developed a mesoscopic
formulation of a microscopic Markov chain model. A 1D
Markov chain is typically written as P, ;41 = Zm Qum Pt
where P, is a vector of probabilities, each entry giving the
probability for the system to be found in a particular state.
In applications that we consider, the state of the system is
simply the number of individuals in the system at a particular
time, and is denoted by the integer n, where n = 0,1, ... ,N,
N being the maximum population that can be supported.
Between two discrete times, ¢ and ¢ + 1, the probability vector
is updated via an application of the matrix @, which is known
as the “transition matrix.” This matrix, along with an initial
condition, P, defines the process. In our previous work, Q
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was given the following, binomial structure:

N
Onm = (n>p"(1 -V, ey

where p is a function of m/N, and where m is the initial
number of individuals present. In [8] we showed that the
N — oo limit of the process has the form of a deterministic 1D
map, governed by the function p. The subsequent article [9]
contained details of the derivation leading to a mesoscopic
description for the system. This description is valid for finite
N, where N is not too small. In these two articles, we used the
logistic map to motivate the form of p, but the method can be
applied more generally. Here we will describe how this method
can be extended to settings with d distinct types of individuals,
and discuss an application to a specific model containing two
species.

Suppose then that a system consists of individuals of d
distinct species, so that the state of the system is now n =
(ny, ...,nqg), where n; is the number of individuals of species
i. Thus, we will write P, ; = Py, 5,...n,.+ as the probability that,
at a given time, n; individuals of type 1, n, individuals of
type 2 are present and so on. At time ¢ the system is updated
as follows:

Pn,t+1 = Z Qn;m Pm,t~ (2)
m

The d-dimensional matrix @ is a natural generalization of the
one-dimensional case (see Eq. (1)) with @ having a (d + 1)-
nomial structure [23]

N!
nl!nz!---nd!(N - Zf.l:l ni)!

d N—Zlen;
X p’lllp;u N pszl (1 — Zpl> y (3)
i=l

where, in a single multinomial trial, p; is the probability of
event i being observed. The probability distribution function
(pdf) is a (d 4+ 1)-nomial, rather than a d-nomial, since there
is (as in the 1D case [8,9]) formally a (d 4 1)-th species of
population N — Zflz | i, which represents the free capacity
of the system.

The probabilities p; will have the general form

Qn;m =

m
P2, --pa) =pl = |, 4
(p1.p2 pa) p(N) “)
where m is the initial state of the system. The functions p will
define the model; some of the forms considered in past work
are given in Sec. III. We note here that, as we are dealing with
probabilities, we require that

d
<ﬂ) 1 (5)
2n(x) -

for all allowed combinations of m. One consequence of
moving to multiple dimensions is that the transition matrix
becomes quite cumbersome to implement numerically, even
for moderate values of N. For example, in two dimensions the
transition matrix will contain (N + 1)* entries. It therefore be-
comes even more important to have a mesoscopic description
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of the system available, where N is simply a parameter, and so
the analysis does not become unfeasible for moderate or large
values of N. Below we outline the ideas behind the derivation
of this mesoscopic description. The method is similar to the
1D case [9], and the details of the derivation are given in
Appendix A.

Our starting point is the assumption that the system is
described by the state variables z; = n;/N,i =1, ...,d. For
large N, a good approximation is to assume that the z; are
continuous; this is the key assumption in the mesoscopic
modeling of the system. If in addition we assume that the
system is Markovian, then it will satisfy the Chapman-
Kolmogorov equation [3]:

P(z,t +1]|z0.t)) = /dz’P(z,t +112,0)P( t| zo.t0),

(6)

where z = (z1, . . .,z4) (note that we have temporarily repre-
sented time as an argument, rather than a subscript, for clarity).
To obtain a Fokker-Planck-like equation, one introduces a
change of variable z; = z; — Az;, and rewrites the above
equation using a Taylor expansion. The properties of the
system are now represented by jump moments M,(z) defined
by

Me(z) = (Z1ss1 — 200" @aust — 200V s=as (1)

where £ is a d-dimensional vector of integers (see
Appendix A).

However, unlike the standard case, where time is contin-
uous [24], we are unable to neglect the higher-order jump
moments. This is because, from one time step to the next,
large changes in z are possible; in the continuous time case the
jump moments were of order d¢, and were by definition small.
Instead, as in the 1D case [9], we use the fact that we expect
jumps from p;, to z; ;+1 to be small, and so work with a new
set of jump moments defined by

Je(p) = (@141 — p1.)" - @al — Pat)Vg=2,  (8)

where r is another d-dimensional vector of integers and where
pi.r = pi(z;). The higher-order J,(p), unlike the M,(z), can
be shown to be of order N2 (see Appendix B) and so may
be neglected. This means that the Taylor expansion may
be truncated, giving a second-order differential equation in
the variables z;. A consequence of working with the jump
moments J, rather than M, is the appearance of pdfs P;(p),
defined such that

Pi(z) = Pi(p)ldet(J)| with J;; = %. )

J

In Appendix A it is shown that for large N Eq. (6) may be
written as

d

1 92
P =P —
1(2) = Pi(a) + ,»,Z=1 T%)

x {[zi(8ij — zj) + z;(8i; — z)IPi(2)}, (10)

where we have reverted to using a subscript for ¢ and have
dropped the dependence on initial conditions [so that P(z,? |
Z0,%) now reads P;(z)]. This is the equivalent equation to the
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Fokker-Planck equation found in the mesoscopic description
of continuous-time Markov processes.

Just as Fokker-Planck equations can be shown to be equiv-
alent to stochastic differential equations [24], in Appendix A,
we show that Eq. (10) is equivalent to the stochastic difference
equation

Ziw1 = P(Z) + 0 = pr + 11 1D
Here n = (11, ...,nyq) is a Gaussian noise with zero mean and
correlator
1
<7Ii,t’7j,t/) = N B;; e (12)

where Bii = pl(l - p,’) and Bij = —PpiPj, if i ;ﬁ ]

We emphasize again that Eq. (11) is not simply the
deterministic map with added noise; the noise is derived
from the microscopic model and has a form dictated by that
model. It is multiplicative, that is, it depends on the dynamical
variable, and is not simply additive. Equations (10) and (11)
give equivalent mesoscopic descriptions of the system, and will
form the starting points for the analysis that we will present in
this paper.

A. The linear theory

In the previous study of the 1D case [9], we showed that
approximate analytic results for the fluctuations around a
nonchaotic attractor could be obtained by linearizing around
the attractor of the deterministic map, e.g., a fixed point, which
we denote by z*. We can extend this to higher dimensions
by making an analogous substitution z, = z* + &,/+/N in
Eq. (11). Equating terms of the same order in N we obtain

& =T +p, (13)

where the Jacobian has been evaluated at the fixed point and
the noise term p, has the same correlator as » (but without
the factor 1/N), again evaluated at the fixed point. We will
denote this correlator by B*. Successive applications of the
linear map, initialized at & at time #, lead us to

t—(tg+1)

E =) "8+ Y (I prmin (14)

m=0

To lighten the notation, we will drop the asterisk from J* and
B*, assuming that all quantities are evaluated at the fixed point.
The quantities of interest for us are the first two moments,
which can be written as

(&) = (J)' &,
(&&7) = (1) &L (I ™™

t—(to+1) t—(to+1)
+< Z (J)mpt—(m-H) Z p;T_(m/+1)(Jm )T>

m=0 m'=0

1—(to+1)

= () kGO + Y J"BUM. (15)

m=0

For both the first and second moment, the first term in
the above expressions provides information about the initial
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condition. This information will be lost taking 7y — —o0. This
means that, in the stationary state, the first moment is zero.
To calculate the variance of the fluctuations in the stationary
state, it is useful to consider the diagonalization of J i.e.,
J=PDP! where D is diagonal, with the eigenvalues
of J, e.g., A, as its entries. The matrix P is constructed
from the eigenvectors of J. We will also use the fact that
(PDP~"Y = PD'P~!. Therefore, the stationary covariance
matrix, Z, can be written as (stationary moments being
denoted by the superscript “st”)

E = (") =) PD"P'B(P")'D"P", (l6)

m=0
or, introducing the matrix C = P~'B(P~ T,
PT'E(P)' =) " D"CD". (17)

m=0

Now the ij-th entry of the matrix D" C D™ is ¢;;(A;A;)",
where ¢;; are the entries of the matrix C. Therefore the sum on
m in Eq. (17) is a geometric sum and can be performed as long
as |A;| < 1 (recall that the eigenvalues of J will in general be
complex). However, if the fixed point is stable, this will be the
case. Carrying out the sum, we obtain

L - e
(PTIEPH Ny = T (18)
i
and so
9= Zpk Cke Py = Z PikPk_rlB”PZ?Ile
iy — ik 7 . . L1je— .
— 1= Mk Rl 1 — Axhe

(19)

The analysis can be extended to the case of an n-cycle.
Again one performs a linearization, but this time around the n
points that comprise the cycle, e.g., 21,22, ... Zn,a = 1, ... 1.
If we start close to the point z,,, iterate the map n times, and
equate terms of the same order in N, one finds in an exactly
analogous way to the 1D case [9],

@ =T 40 (20)

Here J“ = Jy1J a2+ Ja—n and

n
-1 —
o\ =p 0+ 2 Aa - P (21)

m=2

where the labels are to be taken as modn and A, ; =
Ja—lJa—Z' T Ja—i-

Equation (20) has exactly the same form as the original
difference equation (13), except that ¢ changes by n at every
iteration. So we can proceed as in the case of a fixed point,
and find the first two moments in the stationary state, where
knowledge of the initial condition has been lost. Using the
results found above, along with the periodicity of the system,
we can write [compare with Eq. (14)]

[o.¢]
=3O - (22)
m=0
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This implies that in the stationary state the first order moments
are equal to zero, and that the second order stationary moments
are given by

o0
(BT = JO BOg@ Y, (23)
m=0
where
n—1
BY =B, |+ Z Aa-nBa—ninAg_,. 24

m=1

We now write J@ = VOA@OW@Y=1 " where V@ is the
matrix which diagonalizes J@, and A is the diagonal matrix
of its eigenvalues. We are able to calculate the stationary
covariances, &;;, just as we did for the fixed point. One finds
that

Vil (VNG BV NV
1= A

= %

k. l,r,s

(25)

Finally, we can perform a similar analysis on the quasiperi-
odic behavior, which is not seen in the 1D case. The difference
between quasiperiodic and periodic (n-cycle) behavior can be
understood by visualizing the evolution of a 2D map in the
(x,y) plane. In the latter case, once the transient behavior
has been discarded, it is found that only n points are visited,
always in the same order, and so the motion is exactly periodic.
In the quasiperiodic case, although the motion may appear to
be periodic from the time series, in the (x,y) plane the map
never quite returns to a point previously visited. If the map
is iterated for long enough, the points are sufficiently close
to each other that they appear to form a closed ring, as we
shall see in Sec. IIl. To proceed with the linearization, we
write z, = z; + &,/ /N, where z* is now the deterministic,
quasiperiodic trajectory:

&1 = J@)E + o1, (26)
with
(oiipjir) = Bij[p(z)] 8- 27
We will use the initial condition &,_y = &,. Then

t—1

& =JoEo+ Y T pinin + pi1, (28)

m=1

where we have introduced jZ =J@_DJ@h_y) - ().
From Eq. (28)

(&) = Jiko,
(&.£7) = Jogotl (Jb)"

t—1
+ 3 Tt BlpGE (i) + BIpGEE L.
m=1

(29)

Notice that, unlike the cases of the fixed point or n-cycle,
these are not the stationary moments. This is because there is a
neutrally stable direction for fluctuations in the quasiperiodic
case [22], which means that the fluctuations can grow with
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time. Consequently, the moments must be calculated using an
initial condition and at a particular time, #. At very large times,
our predictions will begin to lose accuracy, as the fluctuations
reach the size of the attractor.

B. The power spectra

Unlike the 1D case, in 2D maps the eigenvalues of the
Jacobian, evaluated at the fixed point, can be complex. If this
is the case, then the fixed point will be approached via damped
oscillations. Using the formalism developed above, we will
show that the stochasticity present in the finite-N system is
able to sustain the oscillations, which means that they do not
die out. Similar results are well known for continuous time
systems, where the sustained oscillations are characterized
by the power spectra [21]. Here we report similar results
for discrete-time models, although the power spectrum has
a different analytical form. In this subsection we will restrict
ourselves to two dimensions, although much of the discussion
holds for a general number of dimensions, d.

Our starting point for the theoretical description of the
oscillations will be the linearized difference equation, given in
Eq. (13). We will take the Fourier transform of this equation,
and find a closed form expression for (|€;(w)|?), for i = 1,2.
To do this, we will need to use the discrete-time Fourier
transform [25]:

Ew) = Z Ee ', (30)

=—00

where the sum is over integers 7. Since &(w) is a periodic
function of @ with period 2, we restrict w so that 0 < w <
27 . Taking the Fourier transform of the linearized difference
equation we find

k() = JE() + p(w). (31
Omitting the w dependence of E and p, and introducing the
2x2 unit matrix I, we may write

eI — NE=p, andso E=(“T—))"'p. (32
Using the same notation as in the continuous time case [26],
we define the matrix ® to be e/®I — J, so that £ = &~ 'p.

Therefore

EE =0 'ppi(@) . (33)
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Taking the expectation of the above expression and rewriting
in component form leads to

2

ZZ‘DU (@Bl @1™", (34

Py(w) = (|E()I?)

where we are only con51der1ng the diagonal entries of the
power spectral density matrix and where B is the noise-
correlator matrix.

As for the continuous-time case, we wish to know whether
P;(w) has peaks for nonzero w and if so, the value of these w.
A first approximation may be found by finding the value of
o for which the denominator of the power spectrum, D(w) =
det ®(w)®T(w) is a minimum. For the case d = 2,

2
[T1x =P (39)
j=1

and since we are interested in cases where the eigenvalues
are complex, they will form a conjugate pair. Writing the
eigenvalues in terms of their magnitude and complex phase,
ie., (A1,A2) = (JAle’?, |rle”?), D(w) becomes

D(w) = [|A> = 2|A|cos(w — 0) + 1]

x [IA]? = 2|Alcos(w + 0) + 1]. (36)

D(w) =

Both terms in the square brackets are positive for |A| < 1, and
we can obtain a crude estimate of the position of the peaks
by asking that one or other of these terms are minimized.
This occurs when cos(w = 6) = 1, or when w = 6,27 — 6. A
more refined estimate is obtained by minimizing the entire
expression for D(w) to obtain

2

cosw = M cos 6. 37

202
So, it is the phase of the complex eigenvalues which largely
influences the position of the peaks in the power spectrum.
This differs from the continuous-time case, where it is the
complex part of the eigenvalue which determines the position
of the peak [21]. However, if one considers the discrete-time
deterministic model near the fixed point [Eq. (14), but with p
set equal to zero], then it is the phase which determines the
frequency of the damped oscillations observed as a trajectory
approaches the fixed point.

III. THE LOTKA-VOLTERRA MODEL

To illustrate the theory developed in the previous section
we present a 2D system, which we will describe using the

0.05
0.00 |

Ly Ml N\n

-0.05 |
-0.10
-0.15F
-0.20 £ ‘ ‘

A

2.6 2.8 3.0

3.4 3.6 8 4.0
B

FIG. 1. (Color online) Largest Lyapunov exponent of the Lotka-Volterra map, as the parameter 8 is varied, fixing u = 3.
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FIG. 2. (Color online) A single stochastic realization from the
Markov chain model of the Lokta-Volterra system, showing species
x (blue, higher points) and y (purple, lower points). Parameters used
were N = 140, u = 3 and 8 = 2.6.

Markov chain model. As pointed out in the Introduction,
there is a wide range of models in the literature representing
two-species interactions. Those corresponding to competition
between species may be written in the general form [10-12]

X1 = X (g0 4+ ay)l™, ye1 = wi[h(y: + Bx)I ™, (38)

where g and / are functions and «, 8,b1, and b, are constants.
Models of this kind have been studied extensively [10—12],
and in all cases it is found that they follow the period-doubling
route to chaos. This is not of such great interest to us in this
paper, since this type of behavior is already present in 1D
systems. On the other hand, predator-prey and host-parasitoid
models display a wider variety of behaviors. There exist several
classes of models, most of which can be written in one of the
following forms [13-17,19]:

Xe41 = X exp[r(l — x;) —ay)l,

(39

Vi1 = cxi[1 — exp(—ay,)],
Xep1 = axe (V) Yer1 = ax; — X445 (40)
Xipt = UX P + Y1), Yiw1 = BXiyss (41)

Xep1 = AL+ 2075 vy = xo 1+ 017 @2)

KA

P(x)

0.4

X

(a)
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where ¢ and ¢ are functions and where all other parameters
are constants. These models, where x and y represent the
size of the prey (host) and predator (parasitoid) populations,
respectively, generally undergo a Hopf bifurcation from a
stable fixed point, giving rise to periodic or quasiperiodic
states. These then bifurcate into a series of higher period orbits
(intermingled with quasiperiodic bands in the latter case) until
eventually entering a chaotic region. We shall focus, then, on
these types of interactions.

The simplest model displaying all of the features we are
interested in is that in Eq. (41) which, taking ¢(§) =1 — &,
has the Lotka-Volterra form [15,19]:

X1 = px (1 —x; — y1), (43)
Yig1 = BXiys. 44)

In this model, the prey population grows logistically, and it
is depleted by the presence of predators in the system; these,
in turn, increase in number with the abundance of prey. The
parameters u and B are real parameters, which we take to lie
in the range (0,4). Varying the parameter g for a given value
of 1, we can explore a range of different behaviors. Figure 1
shows the largest Lyapunov exponent (A) of the deterministic
map [27] over a range of B, fixing u = 3. Moving from left to
right, we start with a stable fixed point. The fixed point loses
stability at 8 = 3, as the system undergoes a Hopf bifurcation
and becomes quasiperiodic, indicated by a Lyapunov exponent
equal to zero [22,28]. Periodic windows appear, which are
shown by a negative value of A. Transitions to chaos may
occur from these periodic windows [22].

We will look at the effects of intrinsic noise on
these different attractors in turn. We shall, therefore, use
Egs. (43) and (44) to motivate our choice for the microscopic
probabilities p; in the Markov chain model. In Egs. (3) and (4),
with d = 2, we introduce

mlN—ml—mz
Pr= R

L)
N N C PEPYN

Note that p; and p,, as defined above, satisfy the inequality
in (5), provided 0 < my,my < N. In the thermodynamic

~—— O
~ K<)
).

0.2 0.3 0.4

y
(b)

FIG. 3. (Color online) Comparison of simulation data obtained with the Markov chain (red circles), and data obtained from the stochastic
difference equation (bars) for the Lotka-Volterra model. Parameters used were N = 140, u = 3, and g = 2.6. The theoretical predictions,
found from linearizing the difference equation around the fixed point, is shown by the purple curve.

032135-6



INTRINSIC NOISE AND TWO-DIMENSIONAL MAPS: ...

15+ ; ’;!"i;\— 1
i
/ \
10+ 1
g
(=%
St i
Ob=—— ‘ ‘ | - -
0.30 0.35 0.40 0.45 0.50
X
(a)

PHYSICAL REVIEW E 90, 032135 (2014)

i —\
AT
15+ -
1' \
> 10t -
(=W
5, 4
0 ———— LR R T e
0.20 0.25 0.30 0.35
y
(b)

FIG. 4. (Color online) Comparison between simulation data from the stochastic difference equation (11) (bars) and the analytical prediction
given by Eq. (19) (purple curve), obtained by linearizing the equations around the fixed point. The parameters used for the Lotka-Volterra

model were © = 3 and 8 = 2.6, and N = 1400.

limit, N — oo, we recover the Lotka-Volterra map [Egs. (43)
and (44)].

Figure 2 shows one realization of this process, found by
simulating the Markov chain for N = 140. However, we shall
mainly use the stochastic difference equations to obtain results
in this section, due to the difficulty in using the Markov chain
for larger values of N. The stochastic difference equations are
defined in Eqgs. (11) and (12) with this choice of the functions
pi and p;.

We will begin by looking at the fluctuations around the
stable fixed point, using the ideas developed in the previous
section. Figure 3 compares the simulation results from the
Markov chain with those from the stochastic difference equa-
tions for N = 140, showing good agreement. The histograms
showing results from the stochastic difference equations were
obtained using 80 000 data points. An error analysis was
carried out, using an ensemble of 100 stochastic simulations.
The variation of the height of each bin was very small: less
than the diameter of the circles used to show the results from
the Markov chain. Therefore we do not display the error
bars in the histograms, here or elsewhere in the article. This
figure also displays the probability distribution predicted by

036! ]
0350 ]
% 0341 ]
033F ]
032/ ]
0 20 40 60 80 100

Time

(a)

the linear theory found in the previous section. At this value of
N the linear theory is not very accurate: in particular, it cannot
capture the skewness of the distribution that is apparent at small
N. However, the theory is much more accurate at larger N.
Figure 4 shows very good agreement between the nonlinear
stochastic difference equation and the theoretical prediction
for N = 1400.

A. Quasicycles

We now show some results for a choice of parameters where
quasicycles are visible. By inspecting the form of the power
spectrum, derived in the previous section, it is clear that the
frequency dependence enters through terms of the form e'®.
Therefore, the power spectrum is automatically periodic in
2. Due to the even nature of the function, all information is
contained in the range 0 < w < . In Figs. 5 and 6 we show
the power spectra for species x and y respectively, for N =
50000 and B = 2.92. The value of the complex phase of the
eigenvalues is marked by a vertical dashed line. These figures
also show the oscillations found in the time series obtained
from the stochastic difference equation. In these two figures we

1501

§90 0.5 1.00

(b)

FIG. 5. (Color online) (a) Stochastic oscillations in the concentration of species x in the Lotka-Volterra map. Parameters values are
N =50000, u = 3, and B = 2.92. The black line indicates the value of the fixed point for x in the deterministic map. (b) The power spectrum
of species x from the theory (red line) and simulation (blue dots with error bars), averaged over 4000 realizations. The vertical dashed line

locates the complex phase of the eigenvalues.
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FIG. 6. (Color online) Same as in Fig. 5, but for y.

see good agreement between theory and simulation. However,
as for the continuous-time case, non-Gaussian effects lead to
larger discrepancies as one approaches the bifurcation point at

B =3.

B. Beyond the stable fixed point

The results presented so far, for the linearization and the
power spectra, have concentrated on the fluctuations around
the fixed point. In this section we will look at the remaining

parts of the bifurcation diagram, where the variety of observed
behavior is much wider than for 1D maps (see, e.g., Chapter 3
of Ref. [22] for a detailed discussion). The range of these
include periodic behavior, quasiperiodic behavior, and chaos.
The periodic and quasiperiodic behaviors are closely related.
If one looks at the system’s time evolution in the x-y plane, in
both cases one sees that closed orbits are formed, indicating
oscillatory motion. In the periodic case, the system will return
to the same collection of points each time, whereas this will
not happen in the quasiperiodic case. Both instances can be

-

0.6 " 1 06 e T T
0.5 ! 105t X ]
0.4 - 104k ]
=030 . 1503 . ]
02" 102 ]
0.1 > = 0af [ =] >
000 00
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047 1 04f .
03" 1o03f i
= EN : -
02" 102f -
0.1 1 o0al ]
0.0k . . ] 0.0F
0.2 03 0.4 0.5 020 025 030 035 040 045 050
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(c) (d)

FIG. 7. (Color online) Comparison between the stochastic (orange) and deterministic (blue) dynamics for the Lotka-Volterra map. Top:
The seven-cycle behavior (8 = 3.6) for (a) N = 10000 and (b) N = 250 000. The boxed point in the right panel is further examined in Fig. 8,
where the fluctuations around the point are quantified using the linear theory. Bottom: The fluctuations around the quasiperiodic attractor for

B =3.3for(c) N =10000 and (d) N = 250000. In all cases u = 3.
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FIG. 8. (Color online) Fluctuations around one point of the seven-cycle, indicated by the box in Fig. 7(b). The parameter values are given in
the caption of that figure. We have used the same scaling on the horizontal axis in each panel, to indicate the elongated nature of the fluctuations.

found in the Lotka-Volterra map. The deterministic behavior
is shown by the blue symbols in Fig. 7, with the top panels
showing periodic behavior (in this case, a seven-cycle) and the
lower panels the quasiperiodic motion. The orange symbols in
the figure show a stochastic trajectory for a case of strong (left
panels) and weak (right panels) fluctuations. When the noise
is weak, we can use our linear theory to find the stationary
distribution for the fluctuations around the periodic attractor.
Here we do this for one point of the seven-cycle, indicated by
the box in Fig. 7(b). The distributions of the fluctuations for
both species is shown in Fig. 8. Similar results may be found
for the other six points that make up the attractor.

In the quasiperiodic case, in contrast with the case of a fixed
point or periodic attractor, the variances of the fluctuations
will grow with time, as in indicated in Fig. 9. This is
because there is a neutral direction (along the attractor), along
which the fluctuations can diffuse. In continuous-time models,
similar behavior can be seen in limit cycles [29,30]. So, from
a given initial condition, we can estimate the distribution
of fluctuations at a given time, using the linear theory.
Distributions for both species are displayed in Fig. 9, where
they are compared with the simulation data. Here we write
(6x,&,) to denote the components of the fluctuations in the x

50 r
AN
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40} ?? \ b
/ \
301 1
W
Ay 20F ]
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0t: ) ‘ ;
-0.04 -0.02 0.00 0.02 0.04
&
(a)

and y directions respectively. To obtain the data, we simulate
the stochastic difference equation, storing data at, or very close
to the desired time, . We can then build the distribution by
averaging over an ensemble of trajectories.

IV. CHAOS

There are many papers in the literature which have exam-
ined the effects of stochasticity on chaotic systems (see, e.g.,
Refs. [5-7,31-33]). One interesting question to examine
concerns “noise-induced chaos.” It has been found [6,7,31,32]
that noise can, for parameter choices where the deterministic
map is nonchaotic, induce a transition to behavior which bears
the hallmarks of chaos. However, to the best of our knowledge,
this has only been carried out for the case of external additive
noise, rather than noise which is intrinsic to the system. To
begin with we will examine the dynamics simply by studying
the time series produced from the stochastic equations. That
is, what would we make of the time series, if we did not know
where it came from? We shall analyze the time series using
the time delay embedding technique, designed to reconstruct a
system’s attractor from a single component of the time series, a
result formalized as Taken’s theorem [34]. From a time series

1 e
120 f \ ’
100+ ]
3
~  60F ]
40" ]
20¢ ]
0 LAl ‘ ‘ - ‘ ‘:
-0.02 -0.01 0.00 0.01 0.02

&

(b)

FIG. 9. (Color online) Fluctuations around the quasiperiodic attractor at ¢ = 50 for (a) & and (b) &,, comparing simulation data (bars) with
the theoretical prediction (red line). The initial condition was placed on the attractor, i.e., &y = 0. Parameters used were N = 250000, 8 = 3.3,
and p = 3. For the simulation data, 8 x 10* realizations of the process were generated, selecting one data point (at the desired time) from each.
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FIG. 10. (Color online) Time-dependent exponent curves from simulation data taken from the quasiperiodic regime for (a) N = 10000
and (b) N = 250000. Model parameters used were 8 = 3.3 and u = 3. The embedding parameters were m = 8 and / = 1. The curves were
calculated using 7000 vectors X;. The spatial scales used were (2~¢+1/2 271/2) with i = 10,11, ...,16 (from bottom to top). In neither case do
the curves collapse together to form an envelope. Therefore, the intrinsic stochasticity has not induced chaos-like dynamics.

of one species in the 2D map we construct the embedding
vectors X; such that X; = (x;, X4, X421, - - . »Xitm—1y) Where
the parameters [, the delay time, and m, the embedding
dimension, must be suitably chosen [27,35]. We follow the
work of Gao et al. [7] and calculate the time-dependent
exponent curves, defined as

Lik) = <ln<||Xi+k - Xj+k||)>’
X — X;ll

where the averaging is performed over all pairs (X;,X ), for
which || X; — X;|| is found to lie within a prescribed small
shell, denoted by (r,r 4 8r). Calculating L(k) over a range
of shells, allows us to examine the system’s behavior over
a range of scales. For the case of deterministic chaos, the
curves will increase linearly, before flattening. During the
linear growth stage, the curves from different spatial scales
collapse together, forming an envelope. The formation of this
envelope has been used as a direct test for chaos, with its slope
returning the value of the largest Lyapunov exponent [35,36].
Gao et al. [7] examined the case of noise-induced chaos,
using this method. Using a 1D map with additive noise

(46)
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they showed that an envelope was formed for a parameter
choice for which the deterministic map is nonchaotic. This
envelope was also found for the 1D intrinsic noise case [9].
Here we will study the 2D case: we are especially interested in
the details of the noise-induced transition, if it can be found.
In particular we will test if noise-induced transitions can be
found from a quasiperiodic attractor, and or the periodic case.
We will start with the quasiperiodic case as, by definition, the
largest Lyapunov exponent of the deterministic map will be
equal to zero. So, we will investigate if a transition to chaos,
indicated by a positive exponent, can be induced in this case.
Carrying out this numerical investigation we were unable to
find noise-induced transitions to chaos from a quasiperiodic
attractor. Some typical results are shown for the Lotka- Volterra
system in Fig. 10, for the strong and weak noise cases. The
panels on the left- and right-hand side show the curves L(k)
for each case, respectively: in neither do the curves collapse
together to form an envelope.

Our next step was to look for noise-induced chaos from
periodic attractors. In Fig. 11 we looked at the Lotka-Volterra
map with parameters © =3 and B =3.9116. For these

L(k)

0.0L, ‘ ‘ ‘ ‘
60 80

k
(b)

100 120 140

FIG. 11. (Color online) (a) Phase portrait comparing the stochastic (blue) and deterministic (yellow) dynamics of the Lotka-Volterra map
for the parameter choice 8 = 3.9116, u = 3. The system size used here was N = 10”. (b) Time-dependent exponent curves calculated from
the stochastic time series. The spatial scales used were (2~¢+1/2 271/2) with i = 10,11, ...,16 (from bottom to top). Embedding parameters

werem = 8and/ = 1.
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FIG. 12. (Color online) Largest Lyapunov exponent as a function
of N for B =3.9116, u = 3, calculated using the same formula as
in Fig. 1.

parameters, the deterministic map behaves periodically with
a period of 50. The left-hand panel of the figure shows the
deterministic dynamics in yellow, with a typical stochastic
trajectory in blue, for N = 107. The right-hand panel shows
the curves L(k) plotted over a range of spatial scales. The
figure shows that, while the curves grow linearly (indicating
exponential separation), the curves grow together, forming
an envelope. This chaos-like behavior is visible over a range
of N. However, if N is extremely large (e.g., 10%), the
stochastic dynamics instead follow the periodic attractor, and
the envelope is not found. Or, if N is too small, the stochastic
effects dominate the dynamics and the “fingerprint” of chaotic
behavior cannot be detected.

To quantify the effect of the intrinsic noise one can alter-
natively apply the method employed in Ref. [6], generalized
to two dimensions (see, e.g., Ref. [27]). This method uses
the formula for the calculation of the Lyapunov exponents
for a deterministic map. Hence, it assumes knowledge of the
underlying dynamical process, in contrast with the method
employed earlier. In Fig. 12 we plot the largest Lyapunov
exponent, A, as a function of N for the same choice of
parameters as Fig. 11. The noise-induced transition to chaos is
clearly seen for a range of N which agrees with that predicted
by the method due to Gao et al.

V. DISCUSSION

In this article we have extended previous work [8,9] to
enable the effects of intrinsic noise in discrete-time systems
to be studied in more than one dimension. We began with
a microscopic model, and derived a mesoscopic description
valid for large N, the maximum population that could be
supported in the system. A key goal of the mesoscopic
theory was finding the stochastic difference equation which
describes the finite- N system. The noise in this equation was
intrinsic, and its form could only be found by starting from
a microscopic description of the process. In the nonchaotic
setting, we showed how linearization of this equation could
provide analytical results for, e.g., the fluctuations around a
fixed point. This linearized difference equation also provided
the starting point for the calculation of the power spectra,
which quantifies the sustained oscillations, driven by the
stochasticity, which are visible around the fixed point of

PHYSICAL REVIEW E 90, 032135 (2014)

the deterministic map. In recent years, there has been much
interest in this type of oscillation, often termed “quasicycles,”
in continuous-time systems. However, we are not aware of any
work (either numerical or theoretical) which has indicated their
presence in discrete-time models. This finding is interesting
from a modeler’s perspective, since if a real-world system is
known to exhibit oscillations, this can inform the way in which
the system is modeled (see Ref. [37] for an ecology-based
discussion).

Although we developed the theoretical framework for
arbitrary dimensions, d, we restricted the applications of this
theory to the d = 2 case. Specifically, we investigated a 2D
map with a Lotka-Volterra form, which we used to demonstrate
the utility of the theory in a number of situations. The range
of attractors found in 2D maps has much greater variety than
their 1D counterparts, and so in addition to looking at linear
fluctuations about the fixed point, we also investigated fluctu-
ations about periodic and quasiperiodic attractors. In addition,
we examined the ability of intrinsic noise to induce chaotic
transitions from periodic and quasiperiodic attractors of the
deterministic map. We found that periodic states close enough
to parameter values for which the deterministic map behaves
chaotically can present the hallmarks of chaos in the presence
of intrinsic noise for a range of noise intensities; whereas we
were unable to find such transition from quasiperiodic states.

The reason why the transition should be observed in one
case (for the periodic attractor), but not in the other (the
quasiperiodic attractor) is not clear and requires further study.
In studies of this type [6,7] it is often remarked that noise-
induced transitions to chaos are associated with parameter
choices which are “close” to parameters for which the system is
chaotic. In 2D maps, it is generally true [22] that the transitions
to chaos come from period-doublings of periodic attractors,
rather than directly from quasiperiodic states. Therefore it is
logical that there will be periodic orbits which are very close
to chaotic states. Using the right-hand panel of Fig. 11 we can
estimate the value of the exponent in this case, by calculating
the slope (=~0.033) of the linear growth stage. This value is
similar to the value of the exponent of nearby chaotic states.
This can be seen by examining Fig. 1, which shows the largest
Lyapunov exponent for the deterministic map.

The work reported here suggests many possibilities for
further investigation. From a theoretical viewpoint, it could
be interesting to examine the effects of intrinsic noise on
other, more exotic attractors found in discrete-time maps with
d > 1. These include the appearances of a number of chaotic
“islands,” or the coexistence of multiple quasiperiodic rings,
which are visited sequentially (see Chapter 3 of Ref. [22]
for a detailed study). From a practical point of view, it is
now possible to connect our formalism with a wider range
of ecological models, the majority of which contain multiple
species.
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APPENDIX A: DERIVATION OF THE DISCRETE-TIME
FOKKER-PLANCK-LIKE EQUATION

In this Appendix we will derive the analog of the Fokker-
Planck equation which is found in Markov processes where the
time is discrete. This is not completely straightforward because
jumps from the variable z, to z,;; are not necessarily small,
and so instead jumps from p; to z,,; need to be considered,
where the function p defines the model, as explained in Sec. II.
The derivation closely follows that for the case of a single
variable [9] and the reader is advised to initially consult this
simpler derivation before reading the generalization given
below to two variables, and then eventually to d variables.

Beginning with the case of two variables, the starting point
of the derivation is the Taylor expansion of the Chapman-
Kolmogorov equation, given in Eq. (6) where z = (z1,22).
Following a standard procedure [24], we make the following
change of variables:

7 =21— Az, =12 — Az, (A1)

so that the integrand of Eq. (6) can be written as
P([z1 — Azl + Azy,[20 — Azo]

+ Azt +11]z1 — Azy,20 —

X P(z1 —

Azy,t)

Azi,z2 — Aza,t | 210,220,00).  (A2)
Performing a Taylor expansion of the above expression yields

8514%2

Z Z( AZI)1 (= AZZ)KZ
! 05! 3‘31218‘212

=0 ¢,=
x [P(z1 + Az1,20 + Azo,t + 1| z1,22,1)

x P(z1,22,t | Z10,220,%0)].

(A3)
Let us now insert the above expression into the Chapman-
Kolmogorov equation (6):
P(z,t + 1] z,t)
gl

(— 1)‘3‘( DS
- Z Z I 9biz;00z,

—0 ¢— b!

x f / d(Az)d(Az2)(Az1) " (Az)"

X P(z1 + Azi,z0 + Azo,t + 1| 21,22,8) P(2,t | 20,10),
(A4)

where zg = (z10,220)- We now introduce the jump moments,
which are defined as

My, 0,(z1,22) = // dwy dws(wy — 1) (wy — 22)"

X P(wl3w21t + 1 | Zleth)' (AS)
Working in terms of these quantities, we arrive at
(- 1)51 (_1)82 gttt
P(z,t + 1| z9,00) =
( | 20:10) = Z;) ZZ 6 6! 99790z
2
X [My, 0,(z1.22) Pz, | 20,10)].  (A6)

At this point we deviate from the standard derivation of
the Fokker-Planck equation [24] and introduce jump moments
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from (p1.s,pas) to (21,441,22.0+1). To this end we first rewrite
the jump moments My, ¢,(z1,22) as a conditional average over
the stochastic process z,:

My, ,(21,22) = (21041 — 200" Qa1 — 22.0) ) g=z- (A7)

However we wish to recast the expansion in terms of the jump
moments J,, ,, defined by Eq. (8), therefore we write Eq. (A7)
in the form

My, 0,(z1,22) = (21,041 — Prs + (Prr — 21,01

X (22,001 = par + (P2s = 2201020
6 ¢
- 2]: i: (81> (62> (p1—z)t ™"
=0 r,=0
X (P2 =) n(prp). (AS)
where
i (P1,02) = {Z1ip1 — PO (22001 — P2) ) p=z,  (A9)

as given in Eq. (8), and where p = p;l, =

We can calculate the jump moments J, , from the
formulation of the model in terms of a Markov chain. In
this case, the maximum population size, N, is finite, and the
states are defined by n; , = Nz;,, wherei = 1,2 and n; , is the
number of individuals of type i at time ¢. Therefore we may
write Eq. (A9) as

(1,41 — (NpDI"

- (NPZ)]rZ)n,:m~

Now the conditional probability that the system is in state n
at time ¢ + 1, given it was in state m at time ¢ is simply the
transition matrix Qpn.m, and so we may write Eq. (A10) as

1 1
N e 2o 2

n ny

X [n2 - (]\][72)]r2 Ql’ll,l’lz;ml,mz'

(Note that the corresponding equation in Ref. [9] [Eq. (52)]
has a factor of (—1)" omitted). Since Qu, nyum,;.m, 1S just
the trinomial distribution (3), the J,, ,, are just the central
moments [38] of the trinomial distribution. We show in
Appendix B that J,,, = O(N72) if ri+r, > 2, and so
these terms will, as usual, be neglected when setting up the
Fokker-Planck-like equation. Of the remaining J,, ,,, Joo = 1
by normalization; J; ¢ and J,( can be found by performing
the n, sum and so finding the first two central moments of a
binomial distribution, giving J; o =0and J,p = N “Ipid —
p1); Jo1 and Jo, can be similarly found to be given by
Jogo=0and Jy, =N ~Ipo(1 — py). Only the calculation of
J1,1 requires explicit use of the trinomial distribution, giving
Jii1=—-N ~Ipipa. Substituting these values for J,, ,, into
Eq. (A8) gives

Jrrn(P1,p2) = N N™

X [n2 41 (A10)

Jrl,rz(plaPZ) = _(NPI)]”

(A11)

My, ¢,(21,22)

(-2
= (pi —m)f%pz—zz)fw%zv "'p( - p1)

6y 6H(1—4) N-

1
1 —
5 p2(1—p2)

x (p1—z21)" " A(p2—22)
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x(p1— )" (pr—22) 2 = Ll N~ pips

x (p1—zD" (pa—z2)" T+ OWN ). (A12)
We now substitute the expression (Al2) into (A6)

to find an expression for P(z,t+ 1] 2zp,%) in terms of

J

@ e e (DI (=P 4y = 1)
PR@= ), o o oy nd

1 & (—Dh (=1
EZZ AR ALY

—_ =
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P(z,t | 29,ty). There are four terms, corresponding to the
four terms in Eq. (A12) which, dropping the dependence of
these two pdfs on the initial conditions and writing P;(z)
for P(z,t), we may write as P, (z) = P(l)1 (z) + P(z)1 (z) +
P (3)1( ) + rY (z). For illustrative purposes, let us write down

1+1
explicitly the second of these terms:

3Z1+€z P '
- p1 m(m —z1)"(p2 — 22)? Pi(2)

£+02+2 .
(p1 — 20" (P2 — 22)2 Py(2). (A13)

afr‘rzZlaEQZz

As in the case of one variable [9], this expression can be simplified by first taking its Fourier transform:

@ I & & (= (—l)fz aZ 2 ¢ ¢
I o i f / drexplik 7)o (p1 = 20 (p2 = 2) P11 = PRE)
2N e/ 0 52:0 E Zl BKZZZ
1 o0 o 1 5
=7 ZHZ@_ / f dzexp(ik - 2) (ik)? [(p1 — 2)(EkD1 [(p2 — 22)( k1% pr(1 — p1) Pr(@)

&~

1

1 o o0
= m/ / dzexp(ik - z) explik - (p — )] (ik1)” pi(1 — p1) P, (2)

1o e
- ﬁ /foo /;oo dzexp(ik . p) (lk1)2 pl(l - pl)Pt(Z)-

(Al14)

Since the only z dependence (other than through p) in the integrand of Eq. (A14) is in P;(z), we may write P;(z) dz as P;(p) dp,

such that P;(z) =

Pi(p)ldet(J)| and J;; = dp;/0z;. Therefore

1 o0 o0
P = 5 f / dpexp(ik - p) ik [p1(1 = p1YPi(®)]

ZN/ / dpexp(ik - p)

Taking the inverse Fourier transform gives the result

P(2) _
n@= 2N 92z,

The other terms can be treated in complete analogy, giving

2 2

d
Pt+1(l)=[1+—— 1 =z)+ 5=

2N 92 2N 922,

which is the required form for the evolution of the probability
distribution, and may be written in the form given in Eq. (10),
after the usual neglect of the O(N~2) terms.

An equivalent formalism is to use stochastic difference
equations. One begins by postulating that such equations
should have the form z; ,+; = p;,+ noise, where the noise,
n;, is Gaussian with zero mean, and a correlation function
iy niry) = N~ B;; d;.». The function B;;» has to be chosen
so that the stochastic process is equivalent to (A17). The way
to do this is to calculate the jump moments defined by (A9)
using z ;41 — Pis = N thatis,

Jrrn(P1op2) = (010" (02,6) )2, =2 (A18)

[pl(l — pOP(p)]. (A15)

——lz1(1 = z)P:(2)]. (Al6)
g )

22l —z2) — N 9205, + ON )} Pi(2), (A17)

[
Clearly Joo =1, and Jio= Jo1 =0 as required, Jro =
N_lBll,J()qz = N_1322 and .11,1 = N_1312 = N_lel. To
obtain agreement with the jump moments calculated from the
Markov chain we require that

Bii = pi(1 — pi), B = i,j=12, i#]j.

(A19)

—PiPj,

This is the form given in (12) of the main text. In addition, we
see from (A18) that J,, ,, is of order N=2 for r| + 1, > 2.
The generalization of this derivation from two variables
to the general case of d variables follows very similar lines,
and we will simply indicate how the results at various stages
of the derivation differ. We will frequently adopt a vector
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notation, for instance, z = (21,22, . . .
r = (r1,r2,...,rq), etc.

Again, our starting point is Eq. (6), but for z =
(21,22, - - - ,24)- We introduce Az = z — z’ and make a Taylor
expansion of the integrand:

d oo A)[
[ =7,

x [P(z + Az,t + 1|z,1) P(z,t|z0,%)].

,Zd),( = (31,62, . ,Ed),

32?:1 Li

8EIZ1...

dtazy
(A20)
This can be rewritten as

(- 1)‘
P(z,t + 1| zo,10) = ]‘[Z

i=14¢;=0

x [My(z) P(z,t|z0,%0)],

82,{1:1 &

aglzl...

dlizg
(A21)

where we have introduced

d
// [l_[dwi(wi —zi)"'] P(w,t + 1|z,1)
i=1
d
<|:l_[(zi,t+l - Zi,t)zi:|> .
i=1 7, =17

=

My(2)

(A22)

Just as in the case of one and two variables, these jump
moments are not the appropriate ones; the jumps z; ;41 — Zis
are not necessarily small; however, z;,41 — p;; are. We
therefore write z; ;11 — Zi,r = Zist+1 — Pix + (Pie — Zir), and
use the fact that the jump moments are conditional on z; ;, (and
so p;,) being given, and equal to, e.g., z; and p;, respectively.
Thus z; ;41 — pisisequalto z; .41 — z;, up to ashift (p; — z;).
Expanding in terms of these shifts leads to

d ¢
~ (¢ -
Me(z) = HZ(r)(pi—z,»)f' " (), (A23)
i=1r=0 “*

where

d
Jr(p) = <|:1_[ Zz t+1 — pz :|>

gl

The distribution Q. is a multinomial, and from (A24) J,
can be found in terms of its moments. In Appendix B we will
show that the J, are of O(N ~2) for Zle r; > 2, and so will not
enter into the mesoscopic description that we are constructing.
If Zle r; =0, all r; are zero, and the corresponding value

]vlr/_ nz[nt - (sz)]rl:| Qn;m- (A24)

of J equals 1, by normalization. If Z?:l r; = 1, all but one
ri,r;j, e.g.,is nonzero, and r; = 1. Then all the sums in (A24)
apart from over n; can be carried out, leaving one to find the
mean of a binomial variable, shifted by its mean, which gives
zero. Finally, if Z?:l r; = 2, one possibly is that all but one
ri,7j,€.g.,is nonzero, and r; = 2. Then by the same argument,
the problem reduces to finding the variance of a binomial
distribution, giving N~'p;(1 — p;). The other possibility is

PHYSICAL REVIEW E 90, 032135 (2014)

that all but two r;,7; and ry, e.g., are nonzero, and r; = ry = 1.
Then by summing out all the variables but n; and ny, the
distribution is reduced to a trinomial, and one can find as in
the case of two variables that the corresponding J is equal to
—N~'p; pi. This leads to the analog of Eq. (A12):

d CING
M@ =T — =+ 3 20

i=1 =1
d
x N 'pi(1—p)(p; —z,)"? H(Pi —z)"
i#j
d
Z b N~ pipe(py — 2" (pe — )™
jk j=k
d
x [T =2+ 0N, (A25)
itk

As already mentioned, the J, that contribute are exactly those
that are found in the case of two variables, where Q. is a
trinomial distribution. As a consequence, (A25) has exactly the
same structure as (A12) and so the steps from (A13) to (A16)
are essentially identical in the general case of d variables.
Hence we immediately arrive at the analog of (A17)

1L a2
Po@=|1+— —z:(1—z;
11(2) 2N§821jz,< zj)
1 & 2
- ﬁ . 2,02 ———zjze+ O(NH) | Pi(z). (A26)
Tk

Neglecting the O(N ~?) terms, and rewriting slightly gives

d

82
Piii(z) =P(2)+ —
! AN ; 82,9z,
x {[zi(8i; — zj) +z;(8i; — 2P (@)}, (A27)

This is Eq. (10) in the main text.

The equivalent formalism using stochastic difference equa-
tions is straightforward to determine. Writing z; ;41 — pi; =
i1, as in the case of two variables, one finds from (A24) that

d
Jrori(p1p) = <(H<ni,,>’f>> . am)
i=1 z,=1

which once again leads to

Bii = pi(1 — pi), Bij = iL,j=1,....d, i#],

(A29)

—PiDj,

and J, being of order N=2 for Y% r; > 2.

APPENDIX B: JUMP MOMENTS J,(p) FOR ¥°¢_ r; > 2.

In the derivation of the discrete-time analog of the Fokker-
Planck equation in d dimensions, carried out in Appendix A,
we have used the fact that the moments given by J;(p) defined
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by (A24) are of O(N ~2) for Z?:l r; > 2. Here, we prove this
statement.
Expanding out (A24), and performing the average gives

d r )
Je(p) = 1‘[2(2’_)(—1)"‘-“19{"“" % (B1)

i=15=0 '

where S = Zfl:, s; and where p is the moment (n}' - - - n)')

of the multinomial distribution, with n; = Nz;.
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To find the dependence of ug on N, we first find the N
dependence of the factorial moments defined by [23]

vs = (ni(ng — 1)+ (n — 51 + Dna(ny — 1) - -
X(ny—s2+ 1) ngng—1)---(ng—sqa+1)). (B2)
It is straightforward to prove that
ve=NN—-1)---(N=S+Dp}'---p}, (B3)

as we now show. To do this we introduce the generating
function for the multinomial distribution [23]

N N
N! . )
,W) = Lo, d 1_ —_ e — N_n]_'"_ndwnl...wnd
¢p(pw) =) Znl!”_nd!(N_nl_.___nd)!pl Pyl = p) Pa) 1w
n=0 ng=0
= [prwi + paws + - -+ pawa + (1 — p1 — pa2 -+~ p)1". (B4)

Operating with 5 /dw}' ... 9w on ¢(p,w), and setting each entry in w to unity returns the desired result in Eq. (B3).

Expanding the factorial moments in Eq. (B2), we have

Vg = ([n;' — Aln‘;‘_1 + Bln‘;‘_z 4+ .-

A B )

d d d
= us — I;A,ﬂgﬂ + %wi_:l A A D 4 ; Bl ..., (B5)
i#J

where A; = s;(s; — 1)/2, and Mg) is g with s; reduced by 1; similarly ,ug’j ) is s with both s; and s; reduced by 1.

Applying (B5) to that case of s, but with 5; reduced by 1, s; and s; are reduced by 1, ..., and also noting from (B3) that vy is
of order NS, we see that /s is of order N5, 1 is of order N5~! and 1 is of order N5=2. Therefore
d d
ps=vs+ Y A+ OWN ) = v+ A + 0N ), (B6)
i=1

and so

d
! 1 ! 1 o1 s
pe=Npi' - pif = 5SS = DN*"Ipl' oo pif + 5  silsi = DN pl e pin pi T i
i=1

i=1

Pl + ONS™). (B7)

Equation (B7) gives the required N dependence of js. Substituting back into Eq. (B1) now gives

L

d ri
Lo =[]r" > <
i=1

si=0

The following relations can be straightforwardly verified:

i
5;i=0

i
si=0

Tj

(Yo 5

5;=0 ! 5;=0 J

,~ L 1 L1 _ _
:>(_1), Y= 38— DN 1+§Zsj(sj—1)(Np‘,~) "o |. (B8)

j=1

4 ri X

Z( )(—1)’/—‘“ =0, for r >0,
5

4 ri .

Z < )(—1)”—‘“si(s,- —1)=0, for r; >2,
5

rf)(—l)’.fffsjzo, for r;>lorr; > 1.
.

Therefore for Zle r; > 2, the first three terms in the square bracket of Eq. (B8) give zero contribution, and so J;(p) is of order

N2 for Y i > 2.
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