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We show that the Casimir effect can emerge in microswimmer suspensions. In principle, two effects conspire
against the development of Casimir effects in swimmer suspensions. First, at low Reynolds number, the force
on any closed volume vanishes, but here the relevant effect is the drag by the flow produced by the swimmers,
which can be finite. Second, the fluid velocity and the pressure are linear on the swimmer force dipoles, and
averaging over the swimmer orientations would lead to a vanishing effect. However, being that the suspension is
a discrete system, the noise terms of the coarse-grained equations depend on the density, which itself fluctuates,
resulting in effective nonlinear dynamics. Applying the tools developed for other nonequilibrium systems to
general coarse-grained equations for swimmer suspensions, the Casimir drag is computed on immersed objects,
and it is found to depend on the correlation function between the rescaled density and dipolar density fields.
By introducing a model correlation function with medium-range order, explicit expressions are obtained for the
Casimir drag on a body. When the correlation length is much larger than the microscopic cutoff, the average drag
is independent of the correlation length, with a range that depends only on the size of the immersed bodies.
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I. INTRODUCTION

Microscopic swimmer suspensions constitute an interesting
playground for nonequilibrium physics. Energy is continu-
ously taken from the nutrients dissolved in the solution and
used to produce directed motion. As an effect of the mutual
interaction, swimmers present coherent motion with features
similar to turbulence when the suspension is considered as an
effective fluid [1,2]. By their motion, swimmers also agitate the
fluid and it has been observed that this fluid agitation induces
enhanced diffusion [3–7] and generates directed motion [8,9].
From a mechanical point of view, swimmers are autonomous
objects and, therefore, the total force acting on them vanishes.
Consequently, the net force exerted on the fluid vanishes as
well and, at first order, swimmers can be modeled as force
dipole tensors. Depending on whether the dipole is tensile or
contractile, the swimmers are classified as pushers or pullers,
respectively [10–12]. In the first category we find bacteria like
Escherichia coli, while algae like Chlamydomonas reinhardtii
belong to the second category.

Swimmer suspensions present high fluctuations in particle
density and also in the orientation field when they align in
domains. It has been argued that giant density fluctuations
develop as a consequence of the coupling with the orientation
field in presence of self-propulsion [13–15]. Also, the orien-
tation field shows long wavelength fluctuations in the form
of Goldstone modes that are extremely soft [16,17]. Thanks
to the fluctuations in orientation, swimmer suspensions—even
in the ordered phase—do not show long-range order. At large
scales they look homogeneous and isotropic. It is interesting to
question whether these large fluctuations can generate macro-
scopic phenomena. When the fluctuating fields are limited to
some modes due to the presence of boundary conditions—for
example, due to immersed bodies—the Casimir effect can
appear. The presence of this effect can have important effects
on the motion and self-assembly of immersed objects.

Normally, when two large bodies are immersed in the
fluctuating medium, there is a pressure difference between the

region bounded by the bodies and the exterior region, giving
rise to a force. This pressure difference emerges as a result of
the renormalization of the pressure by the fluctuations [18].
Microswimmers are governed by hydrodynamics at low
Reynolds numbers where the generated stresses are linear
in the force dipole intensity. As a result, when averaging
over the different swimmer orientations it is expected that
no renormalization of the pressure or fluid flow is possible,
leading at first sight to a vanishing Casimir effect. In this
article we will investigate the emergence of Casimir effect and
show that, thanks to the large density fluctuations, Casimir
effects can develop. Indeed, the coarse-grained equations that
describe the dynamics of the suspension have noise terms that
are proportional to the square root of the density, implying
that the stochastic equations are nonlinear [19,20]. A second,
minor concern is that at low Reynolds number, the total force
over any body immersed in the fluid adds up to zero [21,22].
However, in this Stokes regime it is not the force but the drag
on the immersed bodies that is the relevant quantity that will
turn out to be finite due to the fluctuations. Recently, it has
been proposed that a Casimir-like effect can be originated in
the momentum transfer at swimmer-walls collisions (steric
interactions) [23], which can be a complementary mechanism
of the one proposed here.

The article is organized as follows. Section II presents the
fluctuating description of the swimmer suspension and how
the average drag is obtained in terms of coarse-grained fields.
In Sec. III it is shown that the noise terms, which are nonlinear,
imply that the primary fluctuating fields are non-Gaussian. By
making a change of variables we generate a framework that
allows us to compute the Casimir drag in terms of correlation
functions. Section IV presents a complementary mechanism
that also generates a Casimir effect that is due to nonlinear
couplings that emerge near the ordering transition. The drag
generated by this mechanism is obtained by performing similar
computations to the principal case under study. To analyze both
cases, a model for the relevant correlations that are needed for
the calculation is introduced in Sec. V, giving rise to explicit
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expressions for the drag. Finally, conclusions and perspectives
are presented in Sec. VI.

II. FLUCTUATING DESCRIPTION
OF AN ACTIVE SUSPENSION

We consider a suspension of swimmers in a fluid in three
dimensions that we assume to be homogeneous and isotropic
on the large scale. Each swimmer is described by its director
n̂, which points along its direction of motion. Axisymmetric
swimmers are characterized by a force dipole tensor acting on
the fluid,

Sjk = σ0njnk, (1)

where σ0 is the dipole intensity, negative for pushers and
positive for pullers. The effect of the force dipole is to move the
fluid around the swimmer, with a velocity field that is obtained
by solving the Stokes equations, valid at low Reynolds number.
Also, each swimmer generates a stress field (pressure plus
viscous stresses), but as indicated in the Introduction the total
force on any close object vanishes and therefore the stresses
cannot produce a Casimir effect. We concentrate then on the
velocity field that, for a swimmer located at r0, is given by

ui(r) = Jij,k(r − r0)Sjk, (2)

where Jij,k is the gradient of the Oseen tensor along the
direction k,

Jij,k(r) = 1

8πηr3

(
δikrj + δjkri − δij rk − 3

rirj rk

r2

)
, (3)

and summation over repeated indices is assumed [21,22].
When several swimmers are placed in the fluid, by the

linearity of the Stokes equations, the resulting flow field is the
sum of the effects produced by each swimmer. In a suspension
of N swimmers placed in a volume V , the dipolar density is
defined as

sjk(r) =
N∑

α=1

δ(r − rα)Sα
jk, (4)

where Sα
jk = σ0n

α
j nα

k is the dipolar tensor of the αth swimmer
located at rα and we have assumed that all swimmers have the
same dipolar intensity σ0. Note that, since n̂ is a unit vector
Tr sjk(r) = σ0ρ(r), where ρ is the local number density of
swimmers. In terms of the dipolar density, the velocity field is

ui(r) =
∫

V

d3r ′ Jij,k(r − r′)sjk(r′). (5)

We are interested in the ensemble average 〈ui(r)〉, which
depends on 〈sjk〉. To give its statistical properties, we consider
a coarse-grained description for the dominant fields, which
are the swimmer density ρ, the polar density field p, which
is related to the average director τ = p/ρ, and the already
described dipolar density tensor field s. The coarse-grained
descriptions adopt the form of fluctuating hydrodynamic equa-
tions that in general are coupled equations of the form [19,20]

∂tρ = g1[ρ, p,s] + √
ρη, (6)

∂tpi = g2[ρ, p,s] + √
ρξi, (7)

∂t sjk = g3[ρ, p,s] + √
ρζjk, (8)

where gn are functionals of the fields, which depend on the
symmetries, conservation laws, interactions, and models for
activity [16,24–28]. The noise terms are modeled—as it is
usually done—to be white, which, under isotropic conditions,
are characterized by the following statistical properties:

〈η(r,t)〉 = 〈ξi(r,t)〉 = 〈ζij (r,t)〉 = 0

〈η(r,t)ξi(r′,t ′)〉 = 〈η(r,t)ξi(r′,t ′)〉 = 〈ξi(r,t)ζjk(r′,t ′)〉 = 0

〈η(r,t)η(r′,t ′)〉 = �1δ(r − r′)δ(t − t ′)

〈ξi(r,t)ξj (r′,t ′)〉 = �2δij δ(r − r′)δ(t − t ′)

〈ζij (r,t)ζkl(r′,t ′)〉 = [�3δij δkl + �4(δikδjl + δilδjk)]

× δ(r − r′)δ(t − t ′).

We remark that the noise intensities depend on density because
the system is particulate. Indeed, the fluctuations are originated
in the displacements and interactions of the swimmers, events
that in the limit of large numbers are described by Poissonian
statistics leading to deviations that are proportional to the
square root of the number of individuals [19,20].

III. CASIMIR EFFECT

Models with explicit expressions for Eqs. (6)–(8) have
been described in several cases [24–28]. Here, without going
into specific details of these models, we will show that they
generally present Casimir effects. As the equations for the
fields are coupled and the noise terms enter multiplicatively,
in general the fluctuations of the dipole field sjk around its
equilibrium value will not be linear in the noise. Therefore,
its stationary probability distribution function will not be
Gaussian and its average will not vanish, giving rise to Casimir
effects. Note that in particulate systems the noise term are
always multiplicative. However, in many cases the systems
are approximately incompressible and this nonlinearity is
irrelevant. Swimmer suspensions, on the contrary, present
large fluctuations and this dependence cannot be neglected.

The coupling with the noise terms is made linear—additive
noise—by means of defining new fields φ, ψ , and χ , such that
ρ = ρ0 + φ, pi = √

ρψi , and sjk = √
ρ[ σ0

3

√
ρ0δjk + χjk].

Replacing these expressions in Eqs. (6)–(8) and linearizing
the equations in the new fields we obtain

∂tφ = g̃1[φ,ψ,χ ] + η, (9)

∂tψi = g̃2[φ,ψ,χ ] + ξi, (10)

∂tχjk = g̃3[φ,ψ,χ ] + ζjk, (11)

where now the noise terms enter additively and the functionals
g̃n are linear. Consequently, now all the fluctuating fields have
Gaussian statistics with zero mean.

In terms of the new fields, the average dipolar density is

〈sjk(r)〉 = ρ0σ0

3
δjk + 1

2
√

ρ0
〈φ(r)χjk(r)〉, (12)

which is now quadratic on the linearly fluctuating fields; hence,
its average will be generally different from zero. The isotropic
part of the stress does not contribute to the velocity field,
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FIG. 1. Geometry used for the calculation of the Casimir drag.
The bodies confine an active suspension in a region of size
Lx×Ly×Lz. There are nonflux boundary conditions at x = 0 and
x = Lx , while the fields are periodic in y and z. In Eq. (19) the cross
sections of the bodies are modeled as circles of radius R. The total
drag on the bodies results from the subtraction of the drag produced
by the region inside (separation Lx) and outside (separation L′

x) the
bodies. To obtain the final expression, Eq. (23), the limit L′

x → ∞ is
considered.

property that is represented in Stokesian flows by the relation
Jij,kδjk = 0. Therefore, we are left to compute the cross corre-
lation 〈φχjk〉. The Casimir effect emerges in nonequilibrium
systems because the value of this cross correlation depends
on the geometry. In particular, it is modified by the presence
of immersed bodies that introduce boundary conditions on
the fluctuating fields. Here, the potential Casimir effect would
consist on the drag of the immersed bodies, and therefore they
should not be considered as fixed objects. However, if the drag
velocity is small, we can consider that the swimmers see the
intruders as impenetrable bodies. Consequently, they impose
a nonflux boundary condition for the swimmer density that
translates into a nonflux boundary condition for φ. We do not
have a natural boundary condition for the dipolar density s
and the associated field χ , which should be obtained from
kinetic models that include swimmer-object interactions (for
example, see Ref. [29]). For lack of these models we consider
for simplicity that there are also nonflux boundary conditions
for χ , but other boundary conditions can be studied in an
analogous way, leading to similar results, although the sign of
the effect may be reversed as it happens in the critical Casimir
effect [30].

To perform the calculation we consider a geometry and
a protocol similar to the one used in Ref. [31] (Fig. 1).
That is, two equal bodies are immersed in the fluid. If the
separation between the bodies is small compared to their
size, the volume in between can be modeled to have nonflux
boundary conditions on the bodies’ surfaces and periodic
boundary conditions in the other direction. The activity in the
region inside will generate a drag on the objects that should
be subtracted to a similar drag on the other side of the objects.
To make an illustrative calculation of the Casimir drag and,
specially, to show that it gives nonvanishing results we will
simplify the geometry to that of a parallelepiped. We proceed
in a similar way as in Refs. [18,32], considering a volume
V = Lx×Ly×Lz with nonflux boundary conditions for φ and
χ at x = 0 and x = Lx , while the fields are periodic in y and z.
Using these boundary conditions, the fluctuating density field

is expanded as

φ(r,t) = V −1
∑
kx

∑
ky

∑
kz

φ(k,t) cos(kxx)eikyyeikzz, (13)

where kx = πnx/Lx , ky = 2πny/Ly , kz = 2πnz/Lz, nx =
0,1,2, . . .; ny,nz = . . . ,−1,0,1, . . . . Analogous expressions
are used for χij .

The density-dipole correlation in Fourier space results in

〈φ(k)χjk(q)〉 = γkx
V Gjk(k)δ̂k,q, (14)

where Gjk(k) is the density-dipole structure factor in the
bulk that can be obtained by solution of the coarse-grained
Eqs. (9)–(11) with full periodic boundary conditions. The
prefactor γkx

(γkx
= 1/2 if kx = 0 and γkx

= 1 if kx �= 0) and
the modified Kroenenker δ, δ̂k,q = δkx,qx

δky ,−qy
δkz,−qz

, appear
from the use of the nonflux boundary conditions [18].

Going back to real space, we compute

Cjk(r) = 〈φ(r)χjk(r)〉
= V −1

∑
k

′
Gjk(k) cos(kxx)2, (15)

where the prime in the sum indicates that the term kx = 0 is
multiplied by 1/2 and it only depends on x due to the periodic
boundary conditions in y and z. It is possible now to compute
the velocity field:

〈ui(x)〉 = 1

2ρ
1/2
0

∫
d3r ′Jij,k(x − x ′,y ′,z′)Cjk(x ′)

= 1

2ρ
1/2
0 V

∑
k

′ ∫
d3r ′ cos2(kxx

′)

× Jij,k(x − x ′,y ′,z′)Gjk(k).

For an isotropic system, the bulk structure factor can be
generally expressed as

Gjk(k) = A(k)δjk + B(k)
kjkk

k2
, (16)

in terms of two scalar functions of the wavenumber. Again,
the isotropic part does not contribute to the velocity field and
we have

Jij,k(r)Gjk(k) = 1

8πη
B(k)

ri

r3

[
1 − 3

(r · k)2

r2k2

]
. (17)

The swimmer suspension produces a net velocity field as
an effect of the confinement and the nonlinear fluctuations of
the dipolar field. This velocity field generates a Casimir effect
by noting that the velocity at the intruders surfaces does not
vanish, i.e., they are dragged by the fluid. The relevant drag
takes place in the x direction and has the form

〈ux(x)〉 = 1

16πηρ
1/2
0 V

∑
k

′ ∫
d3r ′ cos2(kxx

′)B(k)

× lx

l3

[
1 − 3

(l · k)2

l2k2

]
, (18)

where l = (x − x ′,y ′,z′) and we recall that the integration in
r′ is over the position of the dipole sources while x is the
position where the field is evaluated. To compute the drag on
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the wall, the velocity field must be evaluated at its location
(x = 0) to be further averaged over the wall surface. Here we
note a peculiarity of the Stokes flows: as a consequence of
the incompressibility condition, when a point source is placed
in a fluid, the integrated velocity across an infinity surface
vanishes identically [21,22]. By linearity, a distribution of
dipolar sources produces the same result. Then, if the velocity
field Eq. (18) were averaged over an infinite surface it would
also vanish. However, the immersed bodies are finite. In order
to achieve simple results, we consider an immersed body of
circular cross section of radius R. The average velocity reads

〈〈ux(0)〉〉 = − 1

16πηρ
1/2
0 Lx

∑
k

′ ∫
dx ′ cos2(kxx

′)

×B(k)
x ′(k2 − 3k2

x

)
k2(R2 + x ′2)3/2

, (19)

where 〈〈. . .〉〉 means an ensemble average over the noise and
an average over the body surface.

IV. COMPLEMENTARY MECHANISM

There is a second mechanism that can also generate a
nonvanishing average of s and therefore induce a Casimir
effect. Pusher suspensions (e.g., bacterial baths) and rodlike
swimmers with steric interactions can present a polar transition
where the average director field τ is finite through a spon-
taneous symmetry breaking [16,17]. Close to the transition,
but still in the isotropic phase, the density and director fields
become slow variables and the other fields are enslaved to
them. Specifically, the dipole tensor field is found to be sjk =
σ0[(1 − λτlτl)ρδjk/3 + λρτj τk] with a positive dimensionless
constant λ [33]. Therefore, apart from the isotropic term, it is
quadratic in the fluctuating field.

Deep in the polar phase, the average director field τ has
finite norm. But the system is not in a global symmetry broken
state because the orientation has only a finite correlation length
due to Goldstone mode fluctuations. Therefore, at large length
scales the system is globally isotropic and the analysis we have
performed can be applied here. In the perfectly locally ordered
case (|τ | ≈ 1), the dipole tensor is sjk = ρ0σ0τj τk , being also
quadratic in the fluctuating field.

In an isotropic medium, the average 〈τiτj 〉 can be written
also like in Eq. (16). The derivation then follows in exactly
the same way as in the previous section with an induced
Casimir drag that is given by Eq. (19), albeit with a different
prefactor. Being that the expressions are identical, we continue
the discussion using the notation of the mechanism described
in the previous section.

V. MODEL WITH MEDIUM-RANGE ORDER

To proceed with the calculation of the Casimir effect,
we need to provide a model for the density-dipole structure
factor B(k). To our knowledge, this function has not been
measured in swimmer suspensions. Here we consider a model
with medium-range order that can describe situations where
the suspension is showing structures with a finite correlation
length.

The tensorial structure factor Gij (k) needs to meet two
conditions: it must vanish for k → ∞ and it must be single-
valued at the origin. From this second requirement, it follows
that B(0) = 0, and we can write B(k) = k2B̃(k). The simplest
assumption we can make is that B̃ is characterized by a single
correlation length k−1

0 that, eventually, can diverge at a critical
point as it could happen in a swarming phase or in other
phases with collective order [16]. Following our approach in
Ref. [34] we take, therefore, B as a simple rational function
with a correlation length k−1

0 :

B(k) = σ0�
k2(

k2
0 + k2

)2 . (20)

The prefactor � is a measure of the correlation intensity, which
will be a function of the noise intensities �1,2,3,4, and we
have factored out the dependence on the dipole strength. The
sign of � depends on the particular model that describes the
swimmer suspension. A stochastic extension of the kinetic
model presented in Ref. [33] predicts a positive value [35]. In
the case of the second mechanism where the dipolar density
is enslaved to the director field, the sign of � is given by
the sign of [3〈(k̂ · τ (k))2〉 − 〈|τ (k)|2〉], which is positive if the
director field develops longitudinal structures and negative if
vortex-like structures are formed.

More accurate models, obtained from experiments, discrete
element simulations [2] or continuous models [36] will change
only qualitatively the picture below if they are characterized
by a single correlation length. More complex models, with
different scaling at large distances, should be worked out
separately.

Once Eq. (20) is substituted into Eq. (19), the sums over the
transverse wavevectors ky and kz can be replaced by integrals
when R is large compared with Lx . To integrate, we introduce a
cutoff for large wavevectors 2π/a in order to take into account
that the continuous model is valid up to the microscopic length
a, resulting in the expression

〈〈ux(0)〉〉 = − R̃2σ0�

32π2ηL̃xρ
1/2
0

∑
k̃x

′ ∫
dx̃ ′ cos2(k̃x x̃

′)x̃ ′

(R̃2 + x̃ ′2)3/2

×
[

tanh−1

(
2π2

2π2 + ã2
(
1 + k̃2

x

)
)

− 2π2
(
1 + 3k̃2

x

)
(
1 + k̃2

x

)(
4π2 + ã2(1 + k̃2

x)
)
]
, (21)

where L̃x = k0Lx , R̃ = k0R, x̃ ′ = k0x
′, k̃x = kx/k0, and

ã = k0a.
The most relevant case for the Casimir effect is when there

is a finite correlation length, much larger than the microscopic
cutoff, in which case ã 
 1. If in Eq. (21) we use cos2(k̃x x̃

′) =
1/2 + cos(2k̃x x̃

′)/2, the constant contribution goes as 1/ã for
small ã, while the oscillatory one goes as log ã. Therefore, in
the relevant regime, ã 
 1, we can consider only the constant
contribution that is the dominant one. The sums can be done
numerically and the results, computed for the cases R̃ 
 1,
R̃ ∼ 1 and R̃ � 1, are all well fitted by the expression

〈〈ux(0)〉〉 = − R̃2σ0�

32π2ηρ
1/2
0

c0L̃
2
x

ãR̃(L̃2
x + c1R̃2)

, (22)
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where c0 = 0.29 and c1 = 1.62. For large distances compared
to the intruders’ size (L̃x � R̃), the expression saturates to a
constant value, while for small distances it grows like L̃2

x .
As usual when considering Casimir effects, the total drag on

a surface is obtained by the subtraction of the drag generated
in the region at one side of the intruder with the drag generated
on the other side (see Fig. 1). A simple case corresponds to
considering that the region to the left of the body is large
(L̃x � R̃), such that the asymptotic expression can be used,
resulting in

utotal
x = σ0�

32π2ηρ
1/2
0

c0R

ã

[
1 − L2

x

L2
x + c1R2

]
(23)

that, remarkably, does not depend on the correlation length.
The range of the Casimir drag scales with the size of the
immersed body. This property is an effect of the long-range
effect of the hydrodynamic interactions. A similar result was
obtained for the fluid velocity-velocity correlation function
in a swimmer suspension, even if the swimmer correlations
were short range [34]. If �σ0 > 0, the Casimir drag is
positive, meaning that immersed objects are attracted, while
in the opposite case the intruders are repelled. The stochastic
extension of the kinetic model for swimmers predicts � >

0 [33,35]; therefore, a suspension of pushers (σ0 < 0) would
lead to a repulsive drag. Note that the drag depends on the
cutoff length a. Normally, in the Casimir effect in quantum
electrodynamics or critical fluids this is not the case. In
nonequilibrium systems, the results depend on the specific
system under study, with cases that depend on the cutoff [31]
while others are cutoff-independent [18]. Nevertheless, this is
not a serious issue because here there is a natural cutoff given
by the swimmer size and there is no a priori reason to expect
that there is an ultraviolet regularization.

VI. CONCLUSIONS

We have shown that a Casimir effect is present in low
Reynolds number swimmer suspensions. It consists on an
average drag over immersed objects, which result from the
fluctuating dipolar density field. Although the deterministic
dynamics at low Reynolds number is linear, the stochastic

dynamics that governs fluctuations is nonlinear because the
noise intensities are proportional to the square root of the
density, which is also a fluctuating field. Changing variables to
new fields where now the linear fluctuations are Gaussian, the
drag on an immersed body turns out to be quadratic function
of the new fields. The average drag is susceptible to have a
contribution of the different modes of the fluctuating fields,
which result in a Casimir effect when the allowed modes are
different on both sides of the immersed objects. The intensity
of the Casimir drag depends on the correlation function
of the rescaled density and dipolar density tensor fields.
These correlations have not been measured in experiments
or discrete element simulations and we propose a simple
model with medium-range order for a medium that is isotropic
and homogeneous at the large scale. The resulting drag
range depends on the body size and separation, but not on
the correlation length, which is a result of the long-range
interactions in Stokes flows.

In order to make more quantitative predictions, measure-
ments of the relevant correlation functions are needed, which
could be done, for example, by confocal microscopy methods
as in Ref. [37], where it was possible to track simultaneously
the position and orientation of microscopic objects. Also, a
proper modeling of the dipolar density boundary condition
on immersed bodies is needed as other boundary conditions
than the one used here (nonflux for the density and dipolar
density tensor) could change the sign of the effect, as it has
been observed, for example, in critical Casimir forces [30].

In nonequilibrium systems the Casimir effect can lead to
new phenomena, as compared to its equilibrium counterparts.
Notably, there is the possibility that a single immersed object
of asymmetric shape can experience a drag on its own
leading to self-propulsion originated in fluctuation-induced
phenomena [38,39]. In principle, there is no reason a priori to
exclude this possibility, but precise calculations or experiments
would need to be performed to confirm this.
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Pine, and H. Löwen, Phys. Rev. E 88, 050301(R) (2013).
[38] P. R. Buenzli and R. Soto, Phys. Rev. E 78, 020102(R) (2008).
[39] M. Krüger, T. Emig, G. Bimonte, and M. Kardar,

Europhys. Lett. 95, 21002 (2011).

013024-6

http://dx.doi.org/10.1126/science.1140414
http://dx.doi.org/10.1126/science.1140414
http://dx.doi.org/10.1126/science.1140414
http://dx.doi.org/10.1126/science.1140414
http://dx.doi.org/10.1073/pnas.1001651107
http://dx.doi.org/10.1073/pnas.1001651107
http://dx.doi.org/10.1073/pnas.1001651107
http://dx.doi.org/10.1073/pnas.1001651107
http://dx.doi.org/10.1103/PhysRevE.58.4828
http://dx.doi.org/10.1103/PhysRevE.58.4828
http://dx.doi.org/10.1103/PhysRevE.58.4828
http://dx.doi.org/10.1103/PhysRevE.58.4828
http://dx.doi.org/10.1016/j.aop.2005.04.011
http://dx.doi.org/10.1016/j.aop.2005.04.011
http://dx.doi.org/10.1016/j.aop.2005.04.011
http://dx.doi.org/10.1016/j.aop.2005.04.011
http://dx.doi.org/10.1103/PhysRevE.76.011113
http://dx.doi.org/10.1103/PhysRevE.76.011113
http://dx.doi.org/10.1103/PhysRevE.76.011113
http://dx.doi.org/10.1103/PhysRevE.76.011113
http://dx.doi.org/10.1088/0305-4470/29/24/001
http://dx.doi.org/10.1088/0305-4470/29/24/001
http://dx.doi.org/10.1088/0305-4470/29/24/001
http://dx.doi.org/10.1088/0305-4470/29/24/001
http://dx.doi.org/10.1016/j.physa.2008.06.016
http://dx.doi.org/10.1016/j.physa.2008.06.016
http://dx.doi.org/10.1016/j.physa.2008.06.016
http://dx.doi.org/10.1016/j.physa.2008.06.016
http://arxiv.org/abs/arXiv:1402.6372
http://dx.doi.org/10.1103/PhysRevE.75.040901
http://dx.doi.org/10.1103/PhysRevE.75.040901
http://dx.doi.org/10.1103/PhysRevE.75.040901
http://dx.doi.org/10.1103/PhysRevE.75.040901
http://dx.doi.org/10.1103/PhysRevE.77.011920
http://dx.doi.org/10.1103/PhysRevE.77.011920
http://dx.doi.org/10.1103/PhysRevE.77.011920
http://dx.doi.org/10.1103/PhysRevE.77.011920
http://dx.doi.org/10.1088/1751-8113/42/44/445001
http://dx.doi.org/10.1088/1751-8113/42/44/445001
http://dx.doi.org/10.1088/1751-8113/42/44/445001
http://dx.doi.org/10.1088/1751-8113/42/44/445001
http://dx.doi.org/10.1140/epje/i2012-12095-8
http://dx.doi.org/10.1140/epje/i2012-12095-8
http://dx.doi.org/10.1140/epje/i2012-12095-8
http://dx.doi.org/10.1140/epje/i2012-12095-8
http://dx.doi.org/10.1103/PhysRevLett.109.268701
http://dx.doi.org/10.1103/PhysRevLett.109.268701
http://dx.doi.org/10.1103/PhysRevLett.109.268701
http://dx.doi.org/10.1103/PhysRevLett.109.268701
http://dx.doi.org/10.1103/PhysRevE.89.032720
http://dx.doi.org/10.1103/PhysRevE.89.032720
http://dx.doi.org/10.1103/PhysRevE.89.032720
http://dx.doi.org/10.1103/PhysRevE.89.032720
http://dx.doi.org/10.1209/0295-5075/80/60009
http://dx.doi.org/10.1209/0295-5075/80/60009
http://dx.doi.org/10.1209/0295-5075/80/60009
http://dx.doi.org/10.1209/0295-5075/80/60009
http://dx.doi.org/10.1103/PhysRevLett.96.178001
http://dx.doi.org/10.1103/PhysRevLett.96.178001
http://dx.doi.org/10.1103/PhysRevLett.96.178001
http://dx.doi.org/10.1103/PhysRevLett.96.178001
http://dx.doi.org/10.1007/s10035-007-0056-0
http://dx.doi.org/10.1007/s10035-007-0056-0
http://dx.doi.org/10.1007/s10035-007-0056-0
http://dx.doi.org/10.1007/s10035-007-0056-0
http://dx.doi.org/10.1103/PhysRevE.74.031915
http://dx.doi.org/10.1103/PhysRevE.74.031915
http://dx.doi.org/10.1103/PhysRevE.74.031915
http://dx.doi.org/10.1103/PhysRevE.74.031915
http://dx.doi.org/10.1103/PhysRevE.87.053022
http://dx.doi.org/10.1103/PhysRevE.87.053022
http://dx.doi.org/10.1103/PhysRevE.87.053022
http://dx.doi.org/10.1103/PhysRevE.87.053022
http://dx.doi.org/10.1103/PhysRevLett.92.118101
http://dx.doi.org/10.1103/PhysRevLett.92.118101
http://dx.doi.org/10.1103/PhysRevLett.92.118101
http://dx.doi.org/10.1103/PhysRevLett.92.118101
http://dx.doi.org/10.1103/PhysRevE.88.050301
http://dx.doi.org/10.1103/PhysRevE.88.050301
http://dx.doi.org/10.1103/PhysRevE.88.050301
http://dx.doi.org/10.1103/PhysRevE.88.050301
http://dx.doi.org/10.1103/PhysRevE.78.020102
http://dx.doi.org/10.1103/PhysRevE.78.020102
http://dx.doi.org/10.1103/PhysRevE.78.020102
http://dx.doi.org/10.1103/PhysRevE.78.020102
http://dx.doi.org/10.1209/0295-5075/95/21002
http://dx.doi.org/10.1209/0295-5075/95/21002
http://dx.doi.org/10.1209/0295-5075/95/21002
http://dx.doi.org/10.1209/0295-5075/95/21002



