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A B S T R A C T

From August to November 2017, Madagascar endured an outbreak of plague. A total of 2417 cases of plague
were confirmed, causing a death toll of 209. Public health intervention efforts were introduced and successfully
stopped the epidemic at the end of November. The plague, however, is endemic in the region and occurs an-
nually, posing the risk of future outbreaks. To understand the plague transmission, we collected real-time data
from official reports, described the outbreak's characteristics, and estimated transmission parameters using
statistical and mathematical models. The pneumonic plague epidemic curve exhibited multiple peaks, coinciding
with sporadic introductions of new bubonic cases. Optimal climate conditions for rat flea to flourish were ob-
served during the epidemic. Estimate of the plague basic reproduction number during the large wave of the epi-
demic was high, ranging from 5 to 7 depending on model assumptions. The incubation and infection periods for
bubonic and pneumonic plague were 4.3 and 3.4 days and 3.8 and 2.9 days, respectively. Parameter estimation
suggested that even with a small fraction of the population exposed to infected rat fleas (1/10,000) and a small
probability of transition from a bubonic case to a secondary pneumonic case (3%), the high human-to-human
transmission rate can still generate a large outbreak. Controlling rodent and fleas can prevent new index cases,
but managing human-to-human transmission is key to prevent large-scale outbreaks.

1. Introduction

One of the deadliest natural disasters in human history was reported
as the Black Death—attributed to the bacterium Yersinia pestis—killing
about 50–200 million people in the 14th century (Boire et al., 2014).
Although plague was naturally widespread in ancient times, plague
outbreaks occurred following the deliberate use and propagation of this
disease, serving as a bioweapon (Riedel, 2005). Nowadays, plague
epidemics continue to pose a threat to humans, reporting continuous
annual occurrence in five countries: Madagascar, Tanzania, Vietnam,
China, and the USA (Boire et al., 2014; Dennis et al., 1999). This lethal
bacterium can derive in several forms of plague maintaining its ex-
istence in a cycle involving rodents and their fleas (Centers for Disease
Control and Prevention, 2005). While sanitation and public health
surveillance have greatly reduced the likelihood of a plague pandemic,
isolated plague outbreaks are lethal threats to humankind.

The disease manifests in different clinical forms of plague: bubonic,
pneumonic, and septicemic (Boire et al., 2014). Human infection is
primarily driven by bubonic plague, as a result of being bitten by in-
fected fleas. Additionally, direct contamination with infective materials
can be an alternative transmission route (Boire et al., 2014). Patients

with bubonic plague can develop sudden onset of fever, headache,
chills, tender and painful lymph nodes (World Health Organization,
2017a). While plague can be successfully treated with antibiotics, if
untreated, the bacteria can disseminate from the lymph nodes into the
bloodstream causing secondary septicemic plague. In addition to the
symptoms presented in the bubonic plague, patients with septicemic
plague undergo abdominal pain and possibly bleeding into the skin and
other organs, at the same time, skin and other tissues may turn black
and die, especially on fingers, toes, and the nose (Centers for Disease
Control and Prevention, 2005). However, the most fulminant form of
the disease is driven by the pneumonic plague that is the only form of
plague that can spread from person to person by infectious droplets.
The incubation period of primary pneumonic plague is shorter than in
the other forms of the disease with an average of 4 days (Raymond
Gani, 2004). The disease progresses rapidly and is nearly always fatal
without prompt antibiotic treatments (Mead, 2017).

Patients with pneumonic plague often do not transmit the disease to
anyone, but in the right conditions one can infect many people and
cause an outbreak (Mead, 2017; Kool and Weinstein, 2005). This was
observed in the last epidemic in Madagascar when a 31-year-old man
travelled from the central highlands to the eastern city of Toamasina via
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the capital city, Antananarivo. He died in transit and dozens of his
contacts subsequently became ill (World Health Organization, 2017c).
Since then cases of suspected plague have been reported from many
areas of Madagascar. On 13 September 2017, the Madagascar Ministry
of Public Health notified WHO of an outbreak of pneumonic plague
(World Health Organization, 2017a). A total of 2417 cases of plague
were confirmed of which 77% were pneumonic plague, causing a death
toll of 209 (World Health Organization, 2017c). The Government of
Madagascar with the support of WHO and partners had focused their
efforts on strengthening the identification and treatment of patients and
their contacts, increasing control of rodents and fleas, and practising
safe and dignified burials (World Health Organization, 2017b). These
measures prevented new cases and deaths, however, the disease is en-
demic and occurs annually in the region and elsewhere (Boire et al.,
2014; Dennis et al., 1999), posing the risk of future outbreaks. This
paper provides descriptive and numerical analyses of the plague out-
break to facilitate further studies in evaluating the spread of the plague
as well as targets for disease control and prevention.

2. Materials and methods

Outbreak data – cumulative cases. Data were manually inputted from
separate reports of WHO (World Health Organization, 2017c), in-
cluding the cumulative total numbers of clinical cases (confirmed,
probable, and suspected). The data and codes can be found at the fol-
lowing link https://github.com/systemsmedicine/plague2017. Data
can be updated by sending merge requests to this repository.

Outbreak data – by disease forms. Data were digitized from the figure
reported from WHO (World Health Organization, 2017c), including the
incidences classified by the three forms of the plague disease: pneu-
monic, bubonic, and septicemic. The data and the digitized figure can
also be found in the same repository.

Temperature and precipitation data. Data were requested from the
National Centers for Environmental Information (Order #1133340
Custom GHCN-Daily CSV).

Descriptive analyses. With the aim of facilitating modelling works, we
described dynamics and patterns of variables that have previously
shown to be relevant to plague outbreaks, including temperature and
precipitation (Kreppel et al., 2014).

Statistical estimate of the reproduction number. We estimated the re-
production number (R0) of Yersinia pestis using data of pneumonic cases
(excluding the bubonic cases) during the second (large) wave of the
epidemic, i.e., visually defined from 22/09/17 onwards. The serial in-
terval of plague was assumed gamma distributed with shape and scale
parameters as 5.4 and 0.9, respectively (Nishiura et al., 2006). We re-
ported the R0 estimates using several methods for comparison pur-
poses: exponential growth (EG) (Wallinga, 2007), maximum likelihood
(ML) (White et al., 2009), sequential Bayesian estimation (SB)
(Bettencourt and Ribeiro, 2008), binomial assumption (Nishiura,
2010), and sub-exponential growth model (Viboud et al., 2016; Chowell
et al., 2016).

Plague transmission model (PTM). We proposed a plague transmission
model using a modified SEIR (Susceptible-Exposed-Infectious-
Removed) model with two additional incorporated components re-
flecting the seasonal infection from infected rat fleas and imperfect
sigmoidal effects of public health interventions. A schematic illustration
of the PTM is shown in Fig. 1. The model equations are as follows:
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where S, E, I describe Susceptible, Exposed, and Infectious and the
subscripts b and p denote bubonic and pneumonic form, respectively.
The model assumes that in a population of size N, only a small part
Sb= pN is exposed to infected rat fleas. The infected bubonic cases
become infectious with a proportion ε progressing to the pneumonic
stage (Kool and Weinstein, 2005). The overall transmission rates of the
two modes flea-to-human and human-to-human are denoted by α and β,
respectively.

It has been shown that climatic conditions favour the survival and
reproduction of fleas (Eisen and Gage, 2011; Chotelersak et al., 2015;
Shrewsbury, 2005). Fleas density fluctuates by season temperatures,
and changes in their host (rats) also depend on the season which relates
to the breeding patterns of rats (Varlik, 2015). To this end, we assumed
that the density of infected rat fleas can be described as a sinusoidal
function firf=A+ B sin(2π/12t)+ C cos(2π/12t) (Aron and May,
1982) following the temperature fluctuation; here the average tem-
perature of Madagascar in the period 1960–2008 (Kreppel et al., 2014)
was used. As such, the overall flea-to-human transmission parameter α
implicitly incorporates a scaling factor from temperature to rat fleas
density.

We assumed interventions would reduce flea-to-human and human-
to-human transmission rates via rodent and flea control, via active case
finding and the identification and prophylaxis of contacts. The inter-
ventions effect is assumed imperfect and has a logistic form as
fitv,h,f=1−1/[1+ θ+exp(τh,f− t)], where τ > 0 denotes the time at
which the interventions reached the half maximum effect in controlling
human-to-human (τh) and flea-to-human (τf) transmission. The reduc-
tion from a perfect intervention is defined by θ≥ 0, where θ=0 means
a perfect scenario. The infected cases are assumed to recover and die
with the total rate of removal from the infected pool being δb and δp for
bubonic and pneumonic cases, respectively.

We fitted the PTM to the daily data of pneumonic and bubonic cases
during the large wave of the epidemic curve which was visually defined
from 22/09/17 onwards. Model parameters were estimated using the

Fig. 1. Schematic of plague transmission model (PTM). Assuming a small
proportion (p) of the population is exposed to the risk of being bitten by in-
fected rat fleas. The flea density (firf) is approximated with a sinusoidal function
fitted on Madagascar temperature (see more details in the text of Section 2).
Dashed lines indicate parameters which public health interventions would af-
fect.
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global optimisation algorithm Differential Evolution (Mullen et al.,
2011). We derived also R0 using the next generation matrix (Diekmann
et al., 2009). Simulations and estimations were written in R using
packages base (R Core Team, 2017), deSolve (Soetaert et al., 2010), and
R0 (Obadia et al., 2012) and in Python. Stochastic simulations were
performed using a tau-leaping algorithm with a fixed time-step of ca.
15 min.

3. Results

3.1. Descriptive analyses

During August, bubonic cases appeared sporadically with almost no
records of the pneumonic form (Fig. 2). An increase in number of
pneumonic cases was not necessarily preceded by an increase in the
number of bubonic cases (Fig. 2). It seemed to be that the epidemic
curves include several waves of incidence overlapping each other.

Fig. 3 shows that plague incidences emerged every day in the weeks
though in some weeks fewer cases were reported during the weekends.
No distinctive time lag was observed between the appearances of bu-
bonic and pneumonic cases (Fig. 3). The incidences were negligible
during the period when the Famadihana tradition was presumably
practised. Precipitation measure exhibited no pattern before or during
the outbreak but generally showed a dry climatic condition. Average
temperature increased and reached a higher level (above 23 °C) around
the same time as the outbreak.

Fig. 4 shows that the temperature would typically remain at a level
favouring the rat fleas (20–25 °C (Shrewsbury, 2005)) in the upcoming
months and until May 2018.

3.2. Models and parameter estimates of plague epidemic

Fig. 5 shows that the model and the estimated parameters (Table 1)
capture well the dynamics of both pneumonic and bubonic data. Sto-
chastic transitions could lead to larger or smaller waves of the dy-
namics. There are epidemic trajectories that resemble the intermittent
and small epidemic wave during August. The parameters suggest that
only a small fraction exposed to infected rat fleas is enough to generate
the observed epidemic. Table 1 shows that several statistical estimation
methods gave a similar value for plague's basic reproduction number
which is approximately 7. We also estimated R0 using the PTM.

Fig. 2. Plague dynamics August–October 2017. Reported incidences of the two forms of plague diseases during the 2017 outbreak. The data were digitized from
WHO report's figure (World Health Organization, 2017a).

Fig. 3. Incidences and climate variables. Reported incidences and average temperature and precipitation classifying by week and day of the weeks. The “+” signs
indicate a supposed time period when the Famadihana tradition is practised.

Fig. 4. Fitted sinusoidal of Madagascar temperature. Fitted sinusoidal of
Madagascar temperature (see Section 2) with A=1.15, B=0.08, C=0.1. The
temperature is normalised by the lowest value of July.
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Evaluating the Jacobian of the PTM at the disease-free equilibrium
yielded a threshold parameter R*

=
+
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such that R*≥ 1 results in λ6≥ 0, where λ6 is the largest eigenvalue of
the Jacobian, all the others being non-positive (Appendix A). This result
agrees with the estimate obtained from the next-generation-matrix
(NGM) (Diekmann et al., 2009), for which we find the leading eigen-
value at t=0 to be R0= β/δp= R*(0). In other words, at the beginning
(Sb+ Sp=N) when there are no interventions (fitv,h=1), an infected
subject has a transmission rate β spent an average 1/δp days and thus
generate × =β 6.54δ

1
p

secondary cases.

4. Discussion

Mathematical models of infectious diseases have played a central
role in understanding epidemics, providing an effective way of asses-
sing disease transmission as well as evaluating disease control and
prevention strategies (Heesterbeek et al., 2015). Mathematical model-
ling has proposed new vaccination strategies against influenza infection
(Rose et al., 2014); supported public health strategies for containing
emerging influenza pandemics (Ferguson et al., 2005; Longini, 2005)
and for the use of antiretroviral treatment for HIV-infected patients as a
preventive measure (Tanser et al., 2013); reported real-time estimates
of Ebola's R0 to inform the outbreak situation (Althaus, 2014), among
others.

Fig. 5. Deterministic and stochastic simulations of plague epidemics. The parameters were estimated with the global optimisation algorithm Differential Evolution.
Stochastic simulations were done with tau-leaping algorithm.

Table 1
Transmission parameters estimated from PTMa and statistical models.

Estimate Range Meaning

p 1×10−4 0–0.5 fraction exposed to infected rat flea
γb 0.23 2–6 days (Centers for Disease Control and Prevention, 2005) inverse bubonic plague incubation period
γp 0.29 1–6 (Kool and Weinstein, 2005; Mead, 2017), 1–12 (Raymond Gani, 2004)

days
inverse pneumonic plague incubation period

δb 0.26 4–10 days (Nikiforov et al., 2016) inverse bubonic plague infection period
δp 0.34 1–12 (Raymond Gani, 2004), 1–15 (Tieh and Landauer, 1948) days inverse pneumonic plague infectious period
ε 0.03 < 5% (Kool and Weinstein, 2005), 8–10% (Nikiforov et al., 2016) rate of transition to secondary pneumonic
α 1.9× 10−3 0–10 (scaled) flea-to-human transmission rate
β 2.23 0–10 human-to-human transmission rate
θ 0.11 ≥0 reduction in intervention effects
τh 8.89 0–43b time at which interventions reached half its maximum effect on human-to-

human
τf 17.93 0–43 — in flea-to-human

R0 Estimatec Methods

6.54 Next generation matrix (Diekmann et al., 2009) (R0= β/δp)
6.9[5.2–9.3] Exponential Growth (Wallinga, 2007)
6.9[5.7–8.3] Maximum likelihood (Forsberg White and Pagano, 2008)
6.9[0.8–11.7] Sequential Bayes estimation (Bettencourt and Ribeiro, 2008) at t=0
6.9[5.2–9.7] Binomial assumption (Nishiura, 2010)

7.1, 5.1 Sub-exponential growth (Viboud et al., 2016; Chowell et al., 2016) at 1 week, at epidemic peak.

a Differential Evolution algorithm was run minimizing the least absolute differences of both the bubonic and pneumonic data weighted by their range. The total
population used for simulations is N=25, 570, 895 (United Nations, 2017). Initial conditions of the model is {Np, N(1− p), 0, 0, 1, 1}. For parameters have been
previously estimated elsewhere with a large variance, their range was used here as boundary constrains for the optimisation.

b Maximum simulation time.
c Number in brackets are 95% confident interval.
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However, while it has been noted for the last Ebola outbreak
(Althaus, 2014), data sharing practices are still poor and WHO practices
of reporting (separate PDF files) are putting constraints on modelling
works. In the 2014 Ebola outbreak, for example, most of the modelling
studies were done rather late in the process (Chretien et al., 2015). The
solution can be as simple as putting a unique Excel file and update it, or
better establishing a central website for all WHO outbreak reports, or
alternatively, a data hub to encourage user-contributed reports (a demo
of such interface can be viewed as https://epidemic.Live).

From modelling aspects, plague outbreaks can be more challenging
because: (1) there is a continuous input of flea-to-human transmission
(Fig. 2); this implies the observed epidemic curve can be a mixture of
multiple waves of infected cases generated from different index cases.
Thus, epidemic evaluations could risk over- or under-estimating the
consequences, e.g. the reproduction number or the end time of epi-
demics; (2) there is a known seasonal pattern of the plague epidemic
(Kreppel et al., 2014) for which a direct measure of the rat flea popu-
lation does not exist; (3) the flea-to-human transmission as well as the
transition from bubonic cases to pneumonic cases seemed stochastically
driven (Fig. 2) and could be highly affected by interventions.

Here, the epidemic curves showed plague incidences appearing
sporadically during August (Fig. 2). But then a large increase in pneu-
monic cases was observed, preceded by only a few bubonic cases. Es-
timates of the plague reproduction number showed that a high estimate
is needed to capture this fast-growing phase of the epidemic; the esti-
mate doubled the previous estimates ranging 2.8–3.5 (Nishiura et al.,
2006). It can be speculated that superspearders were likely to exist in
order to generate the large number of cases in a short time as observed
in the pneumonic epidemic curve. This was a common pattern as de-
scribed in plague outbreaks in Madagascar 2017 (World Health
Organization, 2017c) and in the US 1919, 1924, and 1980 (Kool and
Weinstein, 2005). Considering the potential mix of epidemic waves and
outbreak locations in the used data, our estimate of R0 could be over-
estimated. However, the smaller estimates of R0 for this outbreak
ranging 1.1–1.4 (Tsuzuki et al., 2017; Nishiura et al., 2012) could be
due to the inclusion of the long sporadic incidences occurred during
August which can misjudge the transmission ability of pneumonic
plague in optimal conditions from 22.09.2017 onwards (Fig. 2).

Nonetheless, approaches adjusting for the propagated outbreak data
are needed to further understand its effect on parameter estimates. For
example, how do the data of a non-synchronised and combined epi-
demic curve affect the reproduction number? Implementations and
calculations using current methods raised also an issue that has been
discussed elsewhere (Forsberg White and Pagano, 2008), that is esti-
mating the reproduction number using serial interval could yield very
high value during the first days of the epidemic growing phase as the
denominator of the estimator is extremely small during this period.
Overestimate of R0 values have also been observed in populations with
heterogeneous contact pattern population (Llensa et al., 2014).

It seemed that sporadic inputs of bubonic cases brought new index
cases to the human-to-human transmission network constantly with an
estimate of transition to secondary pneumonic is of 3% (Fig. 2). It
followed that the pneumonic epidemic curve exhibited multiple peaks
and waves. As the transmission rate can be high, this observation
suggests that vector control measures are central to prevent potential
next waves of the epidemic. This might be practical as the fraction of
the population exposed to infected rat fleas was low (Table 1). On the
other hand, the estimate of human-to-human transmission needs to be
large in order to capture the data. This prompts that intervention ef-
forts, in cases of exhaustible resources, should prioritise stopping
human-to-human transmission route. In this case, while the bubonic
cases would continue to appear they would not able to generate large
size outbreaks. This approach is practical as with the usual public
health intervention of early detection of the incidences would not only
stop the human-to-human transmission but also provide a better chance
for new bubonic cases to be treated early.

Experiments have shown that an optimal climate for rat fleas to
flourish is a dry climate with temperatures of 20–25 °C (Shrewsbury,
2005). These conditions were observed during the outbreak: a generally
dry weather with the optimal temperature coincided with the period of
high epidemic activity. As further shown in Fig. 4, these conditions
would typically remain the same until May 2018, see further in Kreppel
et al. (2014). This again stresses the role of vector control in preventing
the next waves. It is worth noting that the global changes in climate
conditions could pose a risk of irregular changes in vector biting rate
and reproduction (World Health Organization, in press), requiring af-
fected regions to be vigilant in plague control and prevention. For the
modelling aspect, studies on the dynamics of rat fleas are needed to
help further parameterise the plague transmission model.

In this paper, we collected and described relevant data of the 2017
plague epidemic in Madagascar. We proposed a working mathematical
model for evaluating and predicting epidemic consequences and what-if
scenarios. We discussed potential drawbacks in modelling propagated
epidemic data. We hope that the results would contribute informative
insights for public health officers and provide a framework for further
understanding the dynamics of plague outbreaks.

Author's contributions

VKN, EAH-V: conceptualization and data curation. VKN: metho-
dology, analysis, investigation, and visualisation. CP-R: analysis, sto-
chastic simulations implementation, and visualisation. EAH-V: funding
acquisition, supervision. All authors: review & editing.

Acknowledgment

This work was supported by the Alfons und Gertrud Kassel-Stiftung.

Appendix A. Supporting information
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