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Abstract – We explore a model of metapopulation genetics which is based on a more ecologically
motivated approach than is frequently used in population genetics. The size of the population is
regulated by competition between individuals, rather than by artificially imposing a fixed pop-
ulation size. The increased complexity of the model is managed by employing techniques often
used in the physical sciences, namely exploiting time-scale separation to eliminate fast variables
and then constructing an effective model from the slow modes. We analyse this effective model
and show that the predictions for the probability of fixation of the alleles and the mean time to
fixation agree well with those found from numerical simulations of the original model.

focus  article Copyright c© EPLA, 2018

Introduction. – The subject of population genetics
holds a particular fascination for statistical physicists be-
cause of the many analogies it has with various mod-
els in non-equilibrium statistical mechanics [1,2]. Much
of the formalism used by physicists in the study of
non-equilibrium systems derives from viewing these as
stochastic processes, and is directly applicable to the in-
vestigation of models of population genetics [3,4]. The
concepts that are frequently of interest there, such as the
probability that a particular allele fixes, and the mean
time to fixation, are also the focus of attention in many
physical systems out of equilibrium [5,6].

As the genetic models have become increasingly compli-
cated, incorporating spatial structure, sexual reproduction
or several gene loci, the methods of solution previously em-
ployed are no longer efficacious. The purpose of this arti-
cle is to describe a systematic method for reducing the full
models to effective models, which still provide good pre-
dictions for quantities relating to the fixation of alleles, but
which are simple enough to be analysed mathematically.
This method has previously been applied to several models

(a)Contribution to the Focus Issue Evolutionary Modeling and Ex-
perimental Evolution edited by José Cuesta, Joachim Krug and
Susanna Manrubia.

of population genetics; here we apply it to a model not pre-
viously considered. In this way we hope that the article
has the dual function of serving as a concise review of the
approach, but also providing some original results.

The specific model we will discuss will have a spatial
aspect: several subpopulations in distinct regions, with
individuals able to migrate to one region from another.
It will therefore have many parameters: birth, death and
competition rates which differ between alleles and between
regions; the regions, in turn, vary in size (in the sense that
they can sustain different numbers of individuals), and
the migration rates between them are also variable. We
are therefore confronted with the difficulty of analysing a
rather complex model, as discussed above. This is man-
aged by making two approximations, which we will show
give an excellent agreement with results found by simulat-
ing the original model.

The first is the standard diffusion approximation [7],
which in the language of statistical physics consists of
moving from the microscopic description in terms of in-
dividuals to a mesoscopic description in terms the frac-
tion of the population in the various regions that is of
one type or the other. The second approximation is the
neglect of degrees of freedom that decay rapidly on time
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scales that are of interest to us. This approximation also
has a long history, and is known variously as adiabatic
elimination [8], fast variable elimination [9], centre man-
ifold (CM) theory [10], among others. In the present
application it will turn out that all degrees of freedom
but one, decay away relatively quickly, leaving an effec-
tive theory which is sufficiently simple to be analytically
tractable.

The modelling procedure that we will adopt will include
the effects of migration, selection and genetic drift, but the
processes of birth and death will be taken to be distinct,
unlike the conventional approach in population genetics
where birth and death are coupled in order to keep the
population size fixed [11–13]. Instead, a competition be-
tween the individuals in the system will be introduced that
will have the effect of keeping the population fixed on av-
erage, but with ever present fluctuations about this aver-
age. In this way the basic elements of the model will more
closely resemble an ecological model with the processes
of birth, death and competition, but where the different
species are identified by the fact that they carry different
alleles. We will only examine the case of a single gene in
haploid individuals that can only have two variants; we
will refer to the alleles as type 1 and type 2. The method
can be extended to diploid and multiallelic individuals,
but here we prefer to focus on the effects of spatial struc-
ture, selection due to varying birth, death and competition
rates between the species, and genetic drift due to stochas-
tic effects resulting from the finite number of individuals
present in the system.

We seek to make the model as generic as possible, and so
we will construct it at the fundamental level of individuals
undergoing the processes of birth, death, competition and
migration. The simplest choices for these processes lead
to a Lotka-Volterra competition model [14], and since the
model will be stochastic, we will refer to it as a stochastic
Lotka-Volterra competition (SLVC) model. The spatial
structure will be introduced by asking that the population
is divided into D subpopulations in distinct regions. In
population genetics these might be referred to as demes
or islands; here we will use the terminology of islands,
following the practice in ecology. Similarly we will refer to
the population as a metapopulation [15], since it will have
the structure of a network where the nodes are islands,
with different sizes and with varying link strength (level
of migration) between them.

Model. – As we have stressed above, we believe it is
important to begin at the level of discrete individuals and
the interactions between them. As also mentioned, in
common with most authors, we make the diffusion ap-
proximation [7] in order to make progress in analysing the
model. Within this approximation the variables are the
number density of individuals of type α on island i, de-
noted by x

(α)
i . The parameters of the model are both

local (the birth and death rates of these individuals, re-
spectively b

(α)
i and d

(α)
i , and the competition between

types α and β on island i denoted by c
(αβ)
i ) and non-

local (the rate μij at which an individual from island j
will migrate to island i). The specification of the model
and the application of the diffision approximation is by
now standard [7,16], and is discussed in detail for this
particular model in sect. 2 of the supplementary material
Supplementarymaterial.pdf (SM). Our interest here is
in the second approximation discussed in the introduction,
which can be made after this first approximation has been
carried out, and therefore our starting point will be the
stochastic differential equation which is the outcome of
the analysis described in sect. 2 of the SM.

To simplify the form of the stochastic differential equa-
tion it is useful to introduce an index I that runs from
1 to 2D, so that I = i if the allele labelled is 1 and
if the island being considered is i, and I = D + i if
the allele labelled is 2 and if the island being considered
is i. The state of the system is denoted by the vector
x = (x(1)

1 , x
(2)
1 , . . . , x

(D)
1 , x

(1)
2 , x

(2)
2 , . . . , x

(D)
2 ). As discussed

in sect. 2 of the SM, the model also contains a set of D
parameters, Vi, which denote the potential capacity of is-
land i, both in terms of environmental factors required to
sustain a population and the size of the island. Within
the diffusion approximation we set Vi = βiV , where βi is
a number of order one that characterises the capacity of
each island compared to the others, and where V is the
typical carrying capacity of an island, which is the central
parameter which controls the diffusion approximation. Af-
ter these definitions, we may now write the stochastic dif-
ferential equation (defined in the sense of Itō [5]) derived
in the SM in the form

dxI

dτ
= AI(x) +

1√
V

ηI(τ), (1)

where τ = t/V is a rescaled time and ηI(τ) is a Gaussian
white noise with zero mean and with a correlator

〈ηI(τ)ηJ (τ ′)〉 = BIJ(x)δ(τ − τ ′). (2)

The functions AI(x) and BIJ (x) which specify the model,
are derived in sect. 2 of the SM, beginning from the mi-
croscopic description given by eqs. (SM1)–(SM5). They
are given by

A
(α)
i (x) =

1
βi

{(
b
(α)
i − d

(α)
i

)
x

(α)
i −

2∑
β=1

c
(αβ)
i x

(α)
i x

(β)
i

+M(α,−)
i

}
, i = 1, . . . ,D, α = 1, 2, (3)

and

B
(αα)
ii (x) =

1
β2

i

{(
b
(α)
i + d

(α)
i

)
x

(α)
i +

2∑
β=1

c
(αβ)
i x

(α)
i x

(β)
i

+M(α,+)
i

}
, i = 1, . . . ,D, α = 1, 2, (4)

18001-p2

http://stacks.iop.org/0295-5075/122/18001/mmedia


Reduction of a metapopulation genetic model to an effective model

where the non-local contributions due to migration,
M(α,±)

i , are given by

M(α,±)
i =

∑
j �=i

[
μijx

(α)
j ± μjix

(α)
i

]
. (5)

In addition,

B
(αα)
ij (x) = − 1

βiβj

[
μijx

(α)
j + μjix

(α)
i

]
, (i �= j), (6)

and B
(12)
ij = B

(21)
ij = 0, for all i, j.

While the transition rates which define the model at
the level of individuals (given by eq. (SM1)) are rather
transparent, and can be written down from the model de-
scription, the forms of the equivalent mesoscopic quanti-
ties AI(x) and BIJ(x) given above are rather less clear.
The AI(x), from which the deterministic dynamics follow,
has some familiar elements, namely the first two terms in
the curly brackets which are the usual Lotka-Volterra in-
teraction terms. So although analytic progress is helped
by making the diffusion approximation, the fact that the
functions given by eqs. (3) and (4) are still very complex,
means that further approximations are required. We will
now show that the elimination of fast modes is an ap-
proximation which can be justified biologically, and yields
a simplified model which retains the power to make ac-
curate predictions for quantities such as probabilities of
fixation and mean fixation times.

Identification of slow modes. – In this second ap-
proximation, the mesoscopic model with 2D degrees of
freedom may be reduced to one with only a single degree
of freedom. This reduced model can essentially be thought
of as one with no spatial structure, but defined by a set of
effective parameters, which encapsulate those of the full
model. Later we will compare the result of calculations
from the reduced model to numerical simulations of the
original.

The method is based on the observation that the dy-
namics of the full model consists of two stages. The first
consists of a relatively rapid decay from the initial state
to the vicinity of a CM (if selection is absent) or a slow
subspace (SS) (if selection is present). It then enters the
second stage where it wanders stochastically on or near
the CM (and also weakly deterministically on a SS if weak
selection is present) until fixation of one or other of the
alleles; this is shown in fig. 1 for a neutral system with
D = 5 islands. This is the heart of the time-scale sepa-
ration: the rate of migration, which controls the collapse
onto the SS, is much greater than the rate of genetic drift,
which eventually leads to global fixation. Time-scale sep-
aration arguments have also been used on similar mod-
els elsewhere [17,18]. In the dynamics of the first stage,
stochastic effects play very little role; there is what is in
essence a deterministic collapse onto the CM (or SS). We
will therefore study this first stage of the processs deter-
ministically, beginning with the case of no selection, where
a true CM exists.

Fig. 1: (Colour online) Collapse in the fractions of individuals
of type 1 (top) and 2 (bottom) towards an island-independent
trajectory in the neutral case. The number of islands is D = 5,
and each line corresponds to a single stochastic trajectory of
x

(α)
i , with i = 1, . . . , 5. Parameters: V = 150, κ = 1.5.

Neutral model. In SLVC models, selection is intro-
duced through the parameters b

(α)
i , d

(α)
i , and c

(αβ)
i , which

if made to vary with α and β, give a selective advantage to
those individuals carrying either allele α or allele β. There-
fore to have no selection we set b

(α)
i = b

(0)
i , d

(α)
i = d

(0)
i ,

and c
(αβ)
i = c

(0)
i for all α, β = 1, 2. Substituting this into

the deterministic equation dxI/dτ = AI(x), obtained by
taking the V → ∞ limit of eq. (1), yields

dx
(α)
i

dτ
=

1
βi

{(
b
(0)
i − d

(0)
i

)
x

(α)
i − c

(0)
i x

(α)
i

2∑
β=1

x
(β)
i

+M(α,−)
i

}
, i = 1, . . . ,D, α = 1, 2. (7)

To achieve the maximum reduction, we are searching for
a low-dimensional CM. In this case we can find one which
is one dimensional, by seeking fixed points of eq. (7) that
are independent of i, that is, solutions of

x(α)

⎡
⎣(

b
(0)
i + qi − d

(0)
i

)
− c

(0)
i

2∑
β=1

x(β)

⎤
⎦ = 0, α = 1, 2,

(8)
where

qi ≡
∑
j �=i

[μij − μji]. (9)
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The only solution of eq. (8), apart from the trivial solution
x(1) = x(2) = 0, is

x(1) + x(2) =
(b(0)

i + qi − d
(0)
i )

c
(0)
i

, (10)

which, for consistency, requires that (b(0)
i + qi − d

(0)
i ) =

κc
(0)
i for all i, where κ is a constant. This condition

should perhaps not be surprising, since we are reducing
the model from one with 2D degrees of freedom to one
with only one degree of freedom (x(1), with x(2) deter-
mined from eq. (10)). Therefore each island has in some
sense to be neutral in order to obtain a neutral one-island
model. Later, when we introduce selection, we will be able
to move away from this assumption.

Equation (10) defines the one-dimensional CM, which
we show for a two-island system in the phase diagram of
fig. 2 —fig. SM1 (see SM) further shows that the solu-
tion is island independent. Before proceeding any further,
we scale the original variables of the system, in order to
make the analysis more transparent. To do this, we define
variables

y
(α)
i =

c
(0)
i x

(α)
i

(b(0)
i + qi − d

(0)
i )

= κ−1x
(α)
i , (11)

with i = 1, . . . ,D and α = 1, 2. Then repeating the anal-
ysis of this section, but in the y

(α)
i variables, rather than

in the x
(α)
i , we find a CM where y

(α)
i = y(α) for all i and

α = 1, 2, with
y(1) + y(2) = 1. (12)

We will choose the CM to be parameterised by y(1) which
we will denote by z, the only variable of the reduced sys-
tem. Then y(2) = 1 − z.

The more complete analysis carried out in sect. 3 of the
SM, involves finding the eigenvalues and eigenvectors of
the Jacobian on the CM. The decay rates of the modes
associated with the various eigenvectors are proportional
to the inverse of the corresponding eigenvalues. In the SM
the 2D−1 “fast” modes are identified; the single slow mode
—which is actually static when there is no selection, since
it has eigenvalue zero— corresponds to the CM. For the
purposes of the general overview presented here, the fast
modes simply take the system from its initial condition
(IC) to the CM, the initial point of contact being referred
to as the initial condition on the CM (CMIC).

As discussed earlier in this section, we assume that in
this first part of the dynamics —the decay from the initial
condition, yIC, to the CM— the deterministic dynamics
completely dominates the stochastic dynamics. In effect,
this means that it is assumed that the stochastic system
still reaches the CM at the point zCMIC found from the
deterministic neutral dynamics, and that this can be used
as an initial condition for the second stage of the dynamics,
which takes place entirely on the CM. This assumption
will be examined in the numerical simulations which are
discussed later and in the SM.

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Fig. 2: (Colour online) A neutral system with two islands.
Phase diagram for individuals of types 1 and 2 on island 1.
Blue line: deterministic trajectory; red line: one stochastic tra-
jectory; black, dashed line: CM given by eq. (10). Parameters:
V = 300, κ = 1.5.

Model with selection. To go on to analyse the non-
neutral case we write the birth, death and competition
parameters as follows:

b
(α)
i = b

(0)
i

(
1 + εb̂

(α)
i

)
; d

(α)
i = d

(0)
i

(
1 + εd̂

(α)
i

)
;

c
(αβ)
i = c

(0)
i

(
1 + εĉ

(αβ)
i

)
. (13)

Here ε is the selection strength. As described in sect. 4B
of the SM, we assume that ε and V −1 are of the same
order, and therefore keep order ε terms in AI(y), but only
order one terms in BIJ(y). The noise correlator will then
correspond to the one obtained from the neutral theory
(see sect. 4A of the SM).

In order to find AI(y) to first order in ε, we write the
coordinates on the SS as

y
(1)
i = z + εY

(1)
i +O(ε2), y

(2)
i = (1− z) + εY

(2)
i +O(ε2),

(14)
where Y

(1)
i and Y

(2)
i are to be determined. Substitut-

ing these coordinates into the expressions for A
(1)
i (y) and

A
(2)
i (y) (see eq. (3)), but restricted to the SS, together

with some further analysis, gives eq. (SM29) for the equa-
tion of the SS.

Construction of the reduced model. – So far we
have identified the one-dimensional subspace that the sys-
tem collapses onto (the SS) and have identified the vari-
able which moves the system along this subspace (z). The
subspace itself was found by starting from eq. (14) and
asking that AI(y) only had components along the sub-
space. We can also ask that the noise only acts along the
SS; technically this is best achieved through the construc-
tion of a projection operator which in effect projects the
stochastic differential equation (1) onto a one-dimensional
stochastic differential equation consisting of an effective
deterministic function Ā(z), with the noise having an ef-
fective correlator B̄(z).
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The details of how this projection is carried out are
given in the SM where it is shown (see sect. 4) that we
arrive at the following form for the stochastic differential
equation describing the stochastic dynamics after the fast-
mode elimination:

dz

dτ
= Ā(z) +

1√
V

ζ(τ), (15)

where ζ(τ) is a Gaussian noise with zero mean and
correlator

〈ζ(τ)ζ(τ ′)〉 = B̄(z)δ(τ − τ ′). (16)

Here
Ā(z) = εz(1 − z)(a1 + a2z) + O(ε2), (17)

where

a1 =
D∑

i=1

u
{1}
i

βi

{[(
b
(0)
i b̂

(1)
i − d

(0)
i d̂

(1)
i

)

−
(
b
(0)
i b̂

(2)
i − d

(0)
i d̂

(2)
i

)]
+ κc

(0)
i

[
ĉ
(22)
i − ĉ

(12)
i

]}
(18)

and

a2 = −
D∑

i=1

κu
{1}
i c

(0)
i Γi

βi
, (19)

and where we have defined Γi ≡ ĉ
(11)
i − ĉ

(12)
i − ĉ

(21)
i + ĉ

(22)
i .

In addition, u{1} is the eigenvector of the D × D matrix
with off-diagonal elements μij/βi and diagonal elements
−

∑
j �=i μij/βi, having eigenvalue zero.

In the same way, the reduced noise correlator is found
to be (see eq. (SM38))

B̄(z) = 2bz(1 − z), (20)

where

b = κ−1
D∑

i=1

[u{1}
i ]2

β2
i

b
(0)
i . (21)

We see that the forms for Ā(z) and B̄(z) are similar
to those that we might expect from a model with only
one degree of freedom, but with the parameters of the
model (a1, a2 and b) encapsulating some of the structure
of the original 2D-degrees-of-freedom model. The reduced
stochastic differential equation (15), together with the cor-
relation function in eq. (16) and eqs. (17) and (20), com-
pletely describe the stochastic dynamics of the reduced
system.

It is straightforward to check that the results obtained
above agree with an earlier analysis carried out for a sin-
gle island, i.e., D = 1 [19]. In the single-island reduction,
a further simplication was made, which while not neces-
sary, does simplify the analysis. This consisted in asking
that the SS passes through the two points y = (1, 0) and
y = (0, 1) [19]. The analogue in the present case is the
requirement that when z = 1, y

(1)
i = 1 and y

(2)
i = 0, for

all i. Similarly when z = 0, y
(1)
i = 0 and y

(2)
i = 1, for all i.

If these conditions are not imposed, there is a stochastic

drift along the SS until either of the axes is reached and
fixation of one of the types is achieved. The imposition
of the conditions reduces the number of parameters of the
model and ensures that fixation occurs at z = 0 and z = 1.
In sect. 4B of the SM we show that these conditions imply
that (

b
(0)
i b̂

(1)
i − d

(0)
i d̂

(1)
i

)
= κc

(0)
i ĉ

(11)
i ,(

b
(0)
i b̂

(2)
i − d

(0)
i d̂

(2)
i

)
= κc

(0)
i ĉ

(22)
i , (22)

where i = 1, . . . ,D. The substitution of the conditions in
eq. (22) into eq. (18), leads to a form for eq. (17), at order
ε, which is given by

Ā(z) = εz(1 − z)
D∑

i=1

κc
(0)
i u

{1}
i

βi

[
φ

(1)
i − Γiz

]
, (23)

where
φ

(1)
i ≡ ĉ

(11)
i − ĉ

(12)
i . (24)

This shows that all dependence on the birth and death
parameters has been eliminated; the result for Ā(z) only
depends on the competition parameters.

In the same way as was done in the general case, effec-
tive parameters, which contain information about the full
model, can be introduced:

Γeff ≡
D∑

i=1

κc
(0)
i u

{1}
i

βi
Γi,

φ
(1)
eff ≡

D∑
i=1

κc
(0)
i u

{1}
i

βi
φ

(1)
i . (25)

This then yields

Ā(z) = εz(1 − z)
[
φ

(1)
eff − Γeffz + O(ε)

]
, (26)

which has the same form as in the one-island case [19], but
now with effective parameters. It should be stressed that
the simplification leading to eq. (22) was simply made as
a special case which leads to a simpler end result, which
can be useful in checking the efficacy of the method; the
more general form given by eqs. (17)–(19) should and can
be used in general.

Figure 3 shows a phase diagram for a system with D = 2
islands and selection. The rather strong level of selec-
tion allows us to clearly appreciate the fact that a CM no
longer exists, and the system collapses towards a curved
SS instead; on the latter, both deterministic and stochas-
tic dynamics take place. In the next section we will use the
reduced model to make predictions, and test these through
a numerical simulation of the original model.

Analysis of the reduced model. – The purpose of
this section is twofold. Firstly, to note that the one-degree-
of-freedom model given in the previous section can be
analysed mathematically, and to compare the predictions
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0.0
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Fig. 3: (Colour online) A system with two islands and selec-
tion. Phase diagram for individuals of type 1 and 2 on island 2.
Grey lines: deterministic trajectories for different initial con-
ditions; red dots: one stochastic trajectory; black, dotted line:
CM from the neutral theory; blue, dashed line: slow subspace;
green dot: stable fixed point of the reduced system. Param-
eters: V = 500, κ = 1.5, ε = 0.3, φ

(1)
eff ≈ 0.4, φ

(2)
eff ≈ 0.08,

Γeff ≈ 0.48, z∗ ≈ 0.83.

of this reduced model to simulations of the full model.
Secondly, to use these results to investigate the quality of
the approximations made to obtain the reduced model.

Although the form of the reduced model closely resem-
bles those of one-dimensional stochastic models in popula-
tion genetics [7], there is one significant difference. This is
that Ā(z) is in general cubic in the variable z, rather than
having a simple quadratic form such as sz(1−z), where s is
a selection coefficient. This difference implies that there is
a possibility of an “internal” fixed point —one away from
the boundaries at z = 0 and z = 1. One might naively
expect that the presence of a stable fixed point would lead
to a longer mean time to fixation and an unstable fixed
point to a shorter mean time to fixation.

To investigate this, we use the form of Ā(z) given by
eq. (26). There is the possibility of an internal fixed
point at z∗ = φ

(1)
eff /Γeff if Γeff �= 0, but clearly we require

0 < z∗ < 1, for this to be an internal fixed point in a
biologically relevant regime. If we introduce the quantity

φ
(2)
i ≡ ĉ

(22)
i − ĉ

(21)
i , (27)

in an analogous way to φ
(1)
i , then we can easily show, as

in the one-island case [19], that if 0 < z∗ < 1, then either
φ

(α)
eff > 0 (for both α = 1 and α = 2) or φ

(α)
eff < 0 (again

for both α = 1 and α = 2). We can also investigate the
stability of the internal fixed point. A simple calculation
shows that the internal fixed point is stable if Γeff > 0 and
unstable if Γeff < 0. Since Γeff = φ

(1)
eff + φ

(2)
eff , an internal

fixed point exists and is stable if both φ
(α)
eff are positive

—as shown in fig. 3— and it exists and is unstable if both
φ

(α)
eff are negative.
Two quantities which are of interest to calculate are the

fixation probability of a given allele and the mean time

Fig. 4: (Colour online) Fixation probability of allele 1 (top)
and mean unconditional time to fixation (bottom) as a func-
tion of the projected initial condition z0 (denoted by zCMIC in
the text) for a system with D = 2, V = 150, and κ = 1.5.
Blue (squares, solid line): neutral case; red (triangles, dashed
line): case with selection showing an unstable internal fixed

point, with φ
(1)
eff ≈ −1.33, φ

(2)
eff ≈ −0.15, Γeff ≈ −1.48, and

z∗ ≈ 0.9; green (diamonds, dot-dashed line): case with selec-

tion showing a stable internal fixed point, with φ
(1)
eff ≈ 0.21,

φ
(2)
eff ≈ 0.61, Γeff = 0.82, and z∗ ≈ 0.26. Symbols are obtained

as the mean of 20000 stochastic simulations of the microscopic
system, while the lines correspond to the theoretical predictions
for the fixation probability and mean time to fixation, obtained
from eqs. (SM51) and (SM52) in the neutral case, and from
eq. (SM54) and the analytical solution to eq. (SM50) in the case
with selection. The value of the selection parameter is ε = 0.03.

to fixation of the system, given a set of initial allele fre-
quencies. These are also useful to test the approximations
that have been made to obtain the reduced model, since
they are long-time properties in the sense that we expect
fixation to occur after the system has reached the SS, and
has moved along the SS to reach either z = 0 or z = 1.

To calculate the fixation probability and mean time to
fixation, we revert to the formalism of Fokker-Planck equa-
tions. The details of the calculation are given in the SM
(sect. 5); here we simply compare these results against sim-
ulations of the full system, shown in fig. 4 for D = 2 —and
D = 4 in fig. SM2 (see SM). When there is no selection,
we find that the agreement between theory and simulation
is excellent. When selection is present, we also see that in
spite of the relatively large values of the selection param-
eter explored, the calculation carried out to linear order
in ε captures the behaviour of the full system extremely
well. Furthermore, we corroborate the supposition that
the existence of a stable (respectively, unstable) internal
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fixed point of the reduced system leads to larger (resp.
smaller) values of the fixation time. In fig. 4, we present a
version of the system with ĉ

(11)
i , ĉ

(22)
i > 0 and φ

(1)
i , φ

(2)
i < 0

for all i, so that φ
(α)
eff < 0, α = 1, 2, yielding an unstable

fixed point. This is compared to a version with the signs
of ĉ

(12)
i and ĉ

(21)
i reversed so that, all the other parameters

being equal, in this case φ
(1)
i , φ

(2)
i > 0 for all i and the fixed

point is stable. The difference between both scenarios is
clearly seen. A stronger effect is observed for the case with
D = 4 —see fig. SM2— which shows much longer times to
fixation when a stable fixed point is present.

Discussion. – In this paper we have investigated a
model of metapopulation genetics and shown that, despite
its relative complexity, it could be reduced to an effective
model with only one degree of freedom. This model is
amenable to mathematical analysis.

Our starting point differed from that used by many the-
oretical population geneticists in so far that we did not use
the Wright-Fisher or Moran model in their original micro-
scopic form or in their mesoscopic form obtained through
the diffusion limit. Although these models are widely
used, they have several disadvantages. We have already
mentioned the artifically fixed population size, which is
required because the models do not include competition
between individuals which potentially leads to a rapid in-
crease in population size. Another example, especially rel-
evant in this paper, is the convoluted way in which the
migration process is described in the Moran model.

In the SLVC model, individuals simply migrate at a cer-
tain rate, just as they are born, die or compete with each
other at a certain rate. Therefore, in eq. (SM1), the tran-
sition rates for migration only depend on the population
density of the relevant allele on the island from which the
migration takes place, j. As a consequence it is linear in
this density, but it changes the population size on both
island j and on island i where the migrant moves to. By
contrast, in the Moran model the transition rates depend
on the population density of the relevant allele on both
islands. It is quadratic in the densities, although can-
cellations mean that eventually it turns out to be linear,
but still depending on the densities of the relevant allele
on both j and i. In addition, the migration process only
changes the make-up of the population on island i (by
perhaps displacing a resident of that island), but does not
change the make-up of the population on island j, since all
that happens here is that an offspring of an individual mi-
grates as soon as it is born. The process then, in the SLVC
model, is clearly simpler and more intuitive. A disadvan-
tage of the SLVC model is, of course, that it doubles the
number of variables, as compared to the Moran model, but
it can still be reduced to an effective one-variable model,
just as in the case of the Moran model [20,21].

The method we have discussed in this paper can be
extended to SLVC models with additional features. For
instance, in addition to migration, selection and genetic

drift, the process of mutation could be added, as has been
done for the Moran model [22]. There are, however, many
other effects that could be included: the individuals could
be assumed to be diploid, or the effect of more than one
loci could be included or other types of ecological interac-
tions could be incorporated. There would then be many
types of fast modes, but as long as there was a time-scale
separation between these and a few slow modes, there
would be the possibility of an effective model with just
a few degrees of freedom which would encapsulate the
essence of the full model. In this way it may be possible
to gain quantitative insights into quite complex models.
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1. INTRODUCTION

The historical development of population genetics had some unusual aspects, one of which was
reliance—rare in the biological sciences—on mathematical models. The “modern synthesis” [1]
started with the work of Fisher, Wright and Haldane, which was based on the analysis of simple
models and played a large part in the wide acceptance of the idea of natural selection [2]. These
models were extended in subsequent years [3], but these developments were often divorced from
advances in ecological theory [4]. Another feature was the elaboration and increasing complexity
of the models: as discussed in the main text, the addition of features such as spatial structure,
sexual reproduction or several gene loci, made it increasingly difficult to make analytical progress
with the solution of such models. It is these two components—the detachment from ecological
theory that many models of population genetics display, and the difficulty in analysing more
realistic models—that underlie the objectives of this paper.

The difficulties in carrying out a mathematical analysis of models with distinct subpopula-
tions have resulted in this area of population genetics being less well explored than many others.
Very early on in the development of the subject, Wright [5] studied what is now referred to as
the standard island model, although there was no actual spatial structure assumed. Much later
the stepping stone model [6] did contain a very simple spatial structure: a one-dimensional line
of islands, with migration only allowed from an island to its nearest neighbours. A study of
fixation in a model with spatial population structure by Maruyama [7] led to several further
investigations [8–10]; the book by Rousset [11] gives a comprehensive review of these, and other,
contributions.

The variety of models of spatial structure, the numerous approximations that were used to
investigate them, and the difficulty in assessing the accuracy of the predictions, recently led us
to carry out an investigation of metapopulation genetics, where the starting point was simple
and clear and where the approximations were few and as generic as possible [12, 13]. We will
use a similar approach here, but using the SLVC model rather than a metapopulation version
of the Moran model. The case of a single island SLVC model has been analysed previously [14],
and the present paper can be viewed as a generalisation of this work to a model with spatial
structure. A further purpose of the paper is to provide a concise review of the methodology we
are using; the main text provides an overview of the method together with the key results for
the specific model we investigate, while this supplementary material gives further details.

The outline of this document is as follows. In Sec. 2 we set up the model in a form which
is as simple as possible, if it is to capture the processes that we wish to describe. The use of
the diffusion approximation allows the model to be written as a stochastic differential equation
which is given in the main text. In this form the fast and slow modes of the dynamics can be
identified; these are determined explicitly in Sec. 3. This identification is used in Sec. 4 to derive
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a reduced model, which has only one degree of freedom. This is a significant simplification that
allows us to calculate the probability of fixation and the mean time to fixation of the alleles.
This is carried out in Sec. 5, where the results are compared to numerical simulations of the
original model.

2. FORMULATION OF THE MODEL AND THE DIFFUSION APPROXIMATION

We begin the discussion of the construction and development of the model by specifying the
constituents. The number of haploid individuals occupying island i, with i = 1, . . . ,D, which

carry allele 1 will be denoted by n
(1)
i , and the number which carry allele 2 on the same island by

n
(2)
i . They will reproduce at rates b

(1)
i and b

(2)
i respectively and die at rates d

(1)
i and d

(2)
i . We

will also allow for competition between individuals of type α and β on island i, at a rate c
(αβ)
i ,

α, β = 1, 2. This will tend to regulate the population size, without imposing the condition that

n
(1)
i +n

(2)
i is fixed on each island i. The processes introduced so far are local to island i, but we

are also required to introduce migration between the islands. This is assumed to be independent
of the other processes, and so we will denote by µij the rate at which an individual from island
j will migrate to island i. This process will only be defined for i 6= j. Note that one could make
µij dependent on the allele type α = 1, 2, however here we will assume that the migration rates

for both alleles are equal. We will use the notation n(1) = (n
(1)
1 , . . . , n

(1)
D ), n(2) = (n

(2)
1 , . . . , n

(2)
D ),

and n = (n(1), n(2)) to describe the occupation numbers of the system concisely.
The state of the system, n, will change according to whether individuals of type 1 or type 2

on the various islands change due to one or more of the above processes. To define the dynamics
of the system, we need to give the rate of transition from the current state, n, to a new state
n′. These are taken to be

T1,i(n
(1)
i + 1, n

(2)
i |n

(1)
i , n

(2)
i ) = b

(1)
i

n
(1)
i

Vi
,

T2,i(n
(1)
i , n

(2)
i + 1|n(1)

i , n
(2)
i ) = b

(2)
i

n
(2)
i

Vi
,

T3,i(n
(1)
i − 1, n

(2)
i |n

(1)
i , n

(2)
i ) = d

(1)
i

n
(1)
i

Vi
+ c

(11)
i

n
(1)
i

Vi

n
(1)
i

Vi
+ c

(12)
i

n
(2)
i

Vi

n
(1)
i

Vi
, (SM1)

T4,i(n
(1)
i , n

(2)
i − 1|n(1)

i , n
(2)
i ) = d

(2)
i

n
(2)
i

Vi
+ c

(22)
i

n
(2)
i

Vi

n
(2)
i

Vi
+ c

(21)
i

n
(1)
i

Vi

n
(2)
i

Vi
,

T5,ij(n
(1)
i + 1, n

(2)
i , n

(1)
j − 1, n

(2)
j |n) = µij

n
(1)
j

Vj
, (i 6= j),

T6,ij(n
(1)
i , n

(2)
i + 1, n

(1)
j , n

(2)
j − 1|n) = µij

n
(2)
j

Vj
, (i 6= j),

where in the arguments of the rates we only list those variables that are involved in the reaction
and where the initial state is given on the right and the final state on the left. Here, T1,i (resp.
T2,i) corresponds to the birth of an individual of type 1 (resp. 2) on island i; T3,i (resp. T4,i)
corresponds to the death, either natural or due to competition, of an individual of type 1 (resp.
2) on island i; and T5,ij (resp. T6,ij) corresponds to the migration of an individual of type 1
(resp. 2) from island j to island i.

The transition rates given by Eq. (SM1) are those which give Lotka-Volterra competition
equations in the deterministic limit and we therefore describe them as defining the SLVC
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metapopulation model. The migration process is the simplest possible, and therefore taken
together these are arguably the simplest stochastic dynamics which encodes the processes that
we wish to include in the model. They are also a generalisation of the SLVC model on one island,
which was studied previously [14]. The factors Vi denote the potential capacity of island i, both
in terms of environmental factors required to sustain a population and the size of the island.
As such, they are the carrying capacity of each island, but without the sense of a sharp cut-off,
but rather give a soft cut-off. We will assume that the carrying capacities of the islands vary
among them—some can be more fertile or larger than others—but not by orders of magnitude.
Therefore we will set Vi = βiV , where βi is a number of O(1) that characterises the capacity of
each island compared to the others, and where V is the typical carrying capacity of an island,
which will be used in the application of the diffusion approximation.

The transition rates describe how the system changes in an infinitesimal time step during
which one particular process occurs. To describe the stochastic dynamics over a finite time-
interval we need to introduce a differential equation that describes how the probability distri-
bution function of the system in state n, P (n, t), changes in time due to these transitions. This
is the master equation, which takes the generic form [15]

dP (n, t)

dt
=
∑
n′ 6=n

[
T (n|n′)P (n′, t)− T (n′|n)P (n, t)

]
, (SM2)

where the transition rate T (n′|n) represents all the transitions rates given in Eq. (SM1).
The master equation (SM2) can be expressed more fully by writing the right-hand side of

Eq. (SM2) as

6∑
µ=1

∑
n′ 6=n

[
Tµ(n|n′)P (n′, t)− Tµ(n′|n)P (n, t)

] , (SM3)

where the sum on µ is a sum over the six distinct types of transitions rates listed in Eq. (SM1).
We can go further, and specify the transition rates as they are given in Eq. (SM1) by writing
out the master equation in terms of what are in effect stoichiometric coefficients, which tell us
how many individuals are transformed to other forms or to other islands by the “reactions”
µ = 1, . . . , 6. In the notation introduced above for the master equation, n′ = n − ν, where we
will write νµ for the stoichiometric vector corresponding to reaction µ. Specifically the master
equation now takes the form

dP (n, t)

dt
=

4∑
µ=1

D∑
i=1

[Tµ,i(n|n− νµ,i)P (n− νµ,i, t)− Tµ,i(n+ νµ,i|n)P (n, t)]

+

6∑
µ=5

D∑
i=1

D∑
j 6=i

[Tµ,ij(n|n− νµ,ij)P (n− νµ,ij , t)− Tµ,ij(n+ νµ,ij |n)P (n, t)] , (SM4)

where νµ,i describes how many individuals on island i are transformed during the reactions
µ = 1, . . . , 4 and νµ,ij describes how many individuals on islands i and j are transformed during
the reactions µ = 5, 6. The specific forms of the νµ,i and νµ,ij are:

ν1,i = (0, . . . , 1, 0, . . . , 0) (non-zero entry at i),

ν2,i = (0, . . . , 1, 0, . . . , 0) (non-zero entry at D + i),

ν3,i = (0, . . . ,−1, 0, . . . , 0) (non-zero entry at i),

ν4,i = (0, . . . ,−1, 0, . . . , 0) (non-zero entry at D + i),

ν5,ij = (0, . . . , 1, 0, . . . ,−1, . . . , 0),

ν6,ij = (0, . . . , 1, 0, . . . ,−1, . . . , 0), (SM5)
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where in the last two cases the entry 1 (−1) is at position i (j) for ν5,ij and at position D + i
(D + j) for ν6,ij , where i 6= j.

The master equation (SM4), together with the transition rates in Eq. (SM1) and an initial
condition for P (n, t), gives a complete description of the stochastic dynamics of the system. It
is this basic form that is used in numerical simulations later in the paper.

While the form of the master equation (SM4) appears to be far more complicated than the
master equation (SM3), it has the great advantage that the first approximation that is used to
simplify this rather complicated dynamics—as described in the main text—can be applied in an
almost algorithmic fashion. This is the diffusion approximation, where it is assumed that the Vi
are sufficiently large so that x

(α)
i ≡ n(α)

i /Vi, i = 1, . . . ,D, α = 1, 2, are approximately continuous.
This is a large-V approximation [16], and so another aspect of the approximation is to expand
the master equation as a power series in V −1 to obtain the Fokker-Planck equation [17, 18].
Before giving this equation, however, we describe some notation to make it look a little simpler:
we introduce an index I that runs from 1 to 2D, so that I = i if the allele labelled is 1 and if
the island being considered is i, and I = D + i if the allele labelled is 2 and if the island being
considered is i. Then the Fokker-Planck equation takes the form

∂P (x, t)

∂t
= − 1

V

2D∑
I=1

∂

∂xI
[AI(x)P (x, t)] +

1

2V 2

2D∑
I,J=1

∂2

∂xI∂xJ
[BIJ(x)P (x, t)] , (SM6)

where we have neglected terms of order V −3 and higher, and where x = (x1, x2) = (x
(1)
1 , x

(2)
1 , . . . ,

x
(D)
1 , x

(1)
2 , x

(2)
2 , . . . , x

(D)
2 ).

Equation (SM6) is simply a generic Fokker-Planck equation; we require to derive the specific
forms for the functions AI(x) and BIJ(x) for the model under consideration. In Ref. [19] it
is shown that performing the diffusion approximation, that is going over to the continuous
variables x, and expanding the master equation in powers of V −1, gives the Fokker-Planck
equation with the functions AI(x) and BIJ(x) given as explicit sums over the reactions µ with
stoichiometric coefficients νµ. In this way Eqs. (3)–(6) of the main text can be obtained directly
from Eqs. (SM1)–(SM5). The functions AI(x) and BIJ(x) specify the model and are derived
from, and are in effect the continuous versions of, the transition rates given in Eq. (SM1).

As we discuss below, A
(α)
i (x) is the only function that appears in the deterministic descrip-

tion. It consists of the familiar Lotka-Volterra local terms involving birth, death and competition
of the α allele on island i, together with the migration of this allele between island i and the other

islands, as described by the term M(α,−)
i . The BIJ(x) only appear in the stochastic dynamics.

As mentioned in the main text, the content of the Fokker-Planck equation can be written in
a more intuitive way, in the form of the equivalent Itō stochastic differential equation. The
Fokker-Planck equation (SM6) or alternatively Eqs. (1) and (2) together give the mesoscopic
description of the system. The familiar, deterministic, Lotka-Volterra equations (together with
migration) form the macroscopic description, and can be found by taking the V → ∞ limit of
Eq. (1).

The chief virtue of the diffusion approximation is to move away from discrete variables to
continuous ones, which are easier to analyse. However, as is typically the case when spatial
structure is introduced, even the continuous form of the model is not easy to study, here exem-
plified by the complicated nature of the AI(x) and BIJ(x). We therefore now move on to discuss
a second approximation, which will have the effect of reducing the model to a one-dimensional
effective theory, which can nevertheless make accurate predictions about the original form of the
model.
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FIG. SM1. A neutral system with two islands. Phase diagram for individuals of type 1 on islands 1 and
2. Blue line: deterministic trajectory; red line: one stochastic trajectory; black, dashed line: neutral

solution, x
(α)
1 = x

(α)
2 , α = 1, 2. Parameters: V = 300, κ = 1.5.

3. MODEL REDUCTION I. IDENTIFICATION OF THE SLOW AND FAST MODES

In this section we will give further details of the identification of the slow and fast modes of
the original mesoscopic model. We begin with the model with the selection parameter, ε, set
equal to zero. The preliminary analysis is given in the main text, where it is shown that a CM

exists which is given by y
(α)
i = y(α) for all i and α = 1, 2, with y(1) + y(2) = 1 (see Eq. (12)),

where the y
(α)
i are scaled versions of the original parameters x

(α)
i . We chose the CM to be

parameterised by y(1) which we denote by z, the only variable of the reduced system.

Further insight can be gained by calculating the Jacobian on the CM. To do this, we first

write the deterministic equation for y
(α)
i , analogous to Eq. (7) for x

(α)
i . This is given by

dy
(α)
i

dτ
=
κc

(0)
i y

(α)
i

βi

{
1−

[
y

(1)
i + y

(2)
i

]}
+

D∑
j=1

Hijy
(α)
j , i = 1, . . . ,D, α = 1, 2, (SM7)

where

Hij =
µij
βi
, if i 6= j, Hii = −

D∑
j 6=i

µij
βi
. (SM8)

Differentiating the right-hand side of Eq. (SM7) by y
(β)
k and setting y

(1)
k = z and y

(2)
k = 1 − z,

one obtains the Jacobian

J =

 J z +H J z

J (1− z) J (1− z) +H

 , (SM9)

where J is a D-dimensional diagonal matrix with entries given by Jij = −(c
(0)
i κ/βi)δij .
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We will now give details of the nature of the eigenvalues, and the structure of the eigenvectors,
of the Jacobian, J , defined by Eq. (SM9).

We begin the analysis by recalling the form of the eigenvectors in the one island case [14]:

u{one} =

(
1− z
−z

)
, v{one} =

(
1
−1

)
;

u{two} =

(
1
1

)
, v{two} =

(
z

1− z

)
. (SM10)

Motivated by these we will now show that the eigenvectors of the Jacobian (SM9) fall into the
two classes (

(1− z)αL

−zαL

)
,

(
αR

−αR

)
;

(
β

L
β

L

)
,

(
zβ

R
(1− z)β

R

)
. (SM11)

The proof is very simple, and just consists of applying the Jacobian matrix to the eigenvectors
in Eq. (SM11). One finds that they are indeed eigenvectors, as long as the αs and βs obey the
equations

αLH = λαL, HαR = λαR; β
L

(H + J ) = λβ
L
,

(H + J )β
R

= λβ
R
, (SM12)

where λ is a constant. That is, αL and αR are left- and right-eigenvectors of H respectively, and
β

L
and β

R
are left- and right-eigenvectors of H+J respectively. Since these are 2D eigenvectors,

which are assumed independent, we have reduced finding the eigenvalues and eigenvectors of J
to finding the eigenvalues and eigenvectors of (i) H, and (ii) H + J .

Let us denote the eigenvectors as follows:

U{I} =

(
(1− z)αL

−zαL

)
; V {I} =

(
αR

−αR

)
, I ≤ D ,

U{I} =

(
β

L
β

L

)
, V {I} =

(
zβ

R
(1− z)β

R

)
, I ≥ D . (SM13)

The orthonormality properties of the eigenvectors (SM13) follow from those for the αs and βs,
since

U{I}T · V {J} = αT
L · αR, if I ≤ D; J ≤ D ,

U{I}T · V {J} = 0, if I ≤ D; J ≥ D ,
U{I}T · V {J} = 0, if J ≤ D; I ≥ D ,
U{I}T · V {J} = βT

L
· β

R
, if I ≥ D; J ≥ D . (SM14)

So if the αs and βs are orthonormal, then
∑2D

K=1 U
{I}
K V

{J}
K = δIJ .

We will occasionally denote αL and αR as u and v respectively, since they are the left- and
right-eigenvectors of H. That is,

U{i} =

(
(1− z)u{i}
−zu{i}

)
, V {i} =

(
v{i}

−v{i}

)
, (SM15)

where i = 1, . . . ,D.
From Eq. (SM8) we observe that

∑D
j=1 Hij = 0, for all i. We may write this condition as the

eigenvalue equation
∑D

j=1 Hij v
{1}
j = 0, which implies that v

{1}
j = 1 ∀j is a right-eigenvector of
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H with eigenvalue zero. The other eigenvalues do not have a simple form, and will be complex
in general, since µij will typically not be symmetric. However we can show that their real parts
will always be negative. The proof of this statement is essentially a generalisation of that given
in Sec. III of Ref. [12], which we begin by recapping for convenience.

The proof consists of introducing a matrix R with elements given by Rij = βminHij/(D −
1)µmax, where βmin is the smallest element of the set {β1, . . . , βD} and µmax is the largest
migration rate. Then, by construction, every off-diagonal element of R lies in the interval (0, 1]
and every diagonal element lies in the interval [−1, 0). Therefore the quantities Sij ≡ Rij + δij
are all non-negative and moreover

∑D
j=1 Sij = 1. This implies that the matrix S, with entries

Sij , is a stochastic matrix [20, 21]. Such matrices have a single largest eigenvalue equal to 1 (if,
as we have assumed, no islands are completely isolated) with all the others having a magnitude
less than 1 [20, 21], which implies that they have real parts which are less than 1. Since S and
R share the same eigenvectors, with the eigenvalues of R being those of S minus 1, the real part
of the eigenvalues of R are negative, apart from the largest, which is zero.

A similar argument can be made for the matrix H + J . Here we form

Pij =

{[
(D − 1)

βmin

](
µmax + c(0)

maxκ
)}−1

(Hij + Jij) , (SM16)

where c
(0)
max is the largest member of the set {c(0)

i : i = 1, . . . ,D}. Then again, by construction,
every off-diagonal element of P lies in the interval (0, 1] and every diagonal element lies in the
interval [−1, 0). We can again define Sij = Pij + δij , and so obtain a non-negative matrix, all
of whose entries are less than or equal to 1. The difference now is that the sum of the entries of
the columns of the matrix will not in general equal 1. In fact,

D∑
j=1

Pij = −
{[

(D − 1)

βmin

](
µmax + c(0)

maxκ
)}−1 c

(0)
i κ

βi
, (SM17)

since
∑

j Hij = 0 and J is diagonal. From Eq. (SM17),
∑D

j=1 Pij < 0, which implies that∑D
j=1 Sij < 1. for all i. From the Perron-Frobenius theorem, the largest eigenvalue of S is real,

positive, and is less than the maximum value of
∑D

j=1 Sij taken over all i [20]. If we choose this

eigenvalue to be λ{D+1}, then we have that λ{D+1} < 1. The Perron-Frobenius theorem also
states that all the other (generally complex) eigenvalues of S will have a magnitude less than
λ{D+1}, i.e., less than 1. Therefore by the same argument as used for H, the real parts of the
eigenvalues of H + J are negative.

In fact, the inequality used on Eq. (SM17) can be slightly strengthened:

D∑
j=1

Pij ≤ −
{[

(D − 1)

βmin

](
µmax + c(0)

maxκ
)}−1 c

(0)
minκ

βmax
, (SM18)

where c
(0)
min is the smallest member of the set {c(0)

i : i = 1, . . . ,D} and βmax is the largest
element of the set {β1, . . . , βD}. This implies that the real part of all the eigenvalues of S are
less than

1−
{[

(D − 1)

βmin

](
µmax + c(0)

maxκ
)}−1 c

(0)
minκ

βmax
,

and so

<
[
λ{I}

]
< −

c
(0)
minκ

βmax
, I = D + 1, . . . , 2D. (SM19)
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The above analysis of the eigenvalues and eigenvectors of J shows that, as expected, there is
a single eigenvalue equal to zero, reflecting the existence of the one-dimensional CM. The right-
eigenvector corresponding to this eigenvalue points along the CM. If we assume that none of the
islands are isolated, that is, there is always a sequence of non-zero migration rates connecting
one island to any of the others, then we can show that the real part of all the other eigenvalues
is negative. These are the 2D − 1 fast modes that collapse relatively quickly, taking the system
to the CM.

To make this more concrete, we denote the right (left) eigenvectors of J by V {I} (U{I}) and
the corresponding eigenvalues by λ{I}, where I = 1, . . . , 2D (as above). We will choose the zero
eigenvalue and the associated eigenvectors to be those labelled by I = 1. In the deterministic
limit of the neutral model, discussed above, the system collapses onto the CM, at which point
it ceases to change, since the CM lies along the vector V {1} which has eigenvalue zero. To find
the position on the CM to which the system collapses we introduce the projection operator

PIJ =
V
{1}
I U

{1}
J∑2D

K=1 V
{1}
K U

{1}
K

, (SM20)

which is simply equal to V
{1}
I U

{1}
J , using the orthonormality conditions discussed above

(Eq. (SM14)). Application of PIJ to a function containing the vector V
{I}
J will wipe out

all contributions with I 6= 1, and leave contributions with I = 1 unchanged. Applying it to the
initial value of y set at t = 0, which we will denote by yIC, gives the point on the CM, discussed
above, to which the system deterministically collapses to:

yCMIC
I =

2D∑
J=1

PIJy
IC
J = V

{1}
I

2D∑
J=1

U
{1}
J yIC

J , (SM21)

where the superscript CMIC denotes ‘CM initial condition’. In terms of the z coordinate on the

CM, z = y
(1)
i , introduced earlier, this reads

zCMIC =
2D∑
J=1

U
{1}
J yIC

J , (SM22)

since V
{1}
I = 1 for I ≤ D.

Finally, we can add selection, with the equation of the SS now assumed to have the form

given by Eq. (14) of the main text, where Y
(1)
i and Y

(2)
i are to be determined. Substituting

these coordinates into the expressions for A
(1)
i (y) and A

(2)
i (y) (see Eq. (3)), but restricted to

the SS, gives

A
(1)
i (y)

∣∣∣
SS

= −ε
c

(0)
i

βi
κz
[
Y

(1)
i + Y

(2)
i

]
+ ε

D∑
j=1

HijY
(1)
j

+
ε

βi
z
{(
b
(0)
i b̂

(1)
i − d

(0)
i d̂

(1)
i

)
− c(0)

i ĉ
(11)
i κz − c(0)

i ĉ
(12)
i κ (1− z)

}
+O

(
ε2
)
,

A
(2)
i (y)

∣∣∣
SS

= −ε
c

(0)
i

βi
κ (1− z)

[
Y

(1)
i + Y

(2)
2

]
+ ε

D∑
j=1

HijY
(2)
j

+
ε

βi
(1− z)

{(
b
(0)
i b̂

(2)
i − d

(0)
i d̂

(2)
i

)
− c(0)

i ĉ
(22)
i κ (1− z)− c(0)

i ĉ
(21)
i κz

}
+O

(
ε2
)
.

(SM23)
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An examination of the terms in Eq. (SM23) shows that the coefficient of Y is just the Jacobian,
that is,

AI(y)|SS = ε
2D∑
J=1

JIJ YJ + . . . , (SM24)

where the dots signify the terms in Eq. (SM23) which do not involve Y . This suggests that Y
should be decomposed as follows:

YI =

2D∑
K=2

w{K}V
{K}
I , (SM25)

with the K = 1 term giving no contribution since
∑2D

J=1 JIJ V
{1}
J = 0. Then

AI(y)|SS = ε
2D∑
K=2

λ{K}w{K}V
{K}
I + . . . . (SM26)

The condition that A(y) has no components in the fast directions V {M}, M = 2, . . . , 2D, can

be written in the form 0 =
∑2D

I=1 U
{M}
I AI(y), M = 2, . . . , 2D. This shows why the form (SM26)

is useful: the w(K) are determined immediately by orthonormality, giving 0 = ελ{M}w{M}+ . . ..
To make progress with the remaining terms, indicated by the dots, we need to break up the
condition which determines the w{K}:

0 =

2D∑
I=1

U
{M}
I AI(y) =

D∑
i=1

U
{M}
i A

(1)
i (y) +

D∑
i=1

U
{M}
D+i A

(2)
i (y), (SM27)

where M = 2, . . . , 2D. This gives the w{M}, M = 2, . . . , 2D, as

w{M} = − 1

λ{M}

D∑
i=1

U
{M}
i

z

βi

{(
b
(0)
i b̂

(1)
i − d

(0)
i d̂

(1)
i

)
− c(0)

i ĉ
(11)
i κz − c(0)

i ĉ
(12)
i κ (1− z)

}
− 1

λ{M}

D∑
i=1

U
{M}
D+i

(1− z)
βi

{(
b
(0)
i b̂

(2)
i − d

(0)
i d̂

(2)
i

)
− c(0)

i ĉ
(22)
i κ (1− z)− c(0)

i ĉ
(21)
i κz

}
.

(SM28)

So, in summary, if the coordinates of the slow-subspace are chosen as

y
(1)
i = z + ε

2D∑
K=2

w{K}V
{K}
i ,

y
(2)
i = (1− z) + ε

2D∑
K=2

w{K}V
{K}
D+i , (SM29)

then the w{K} are given by Eq. (SM28).

4. MODEL REDUCTION II. CONSTRUCTION OF THE REDUCED MODEL

Our focus in the rest of the paper is then on the reduced form of the model that describes
the second stage of the dynamics starting at the point zCMIC, and reaching an axis, at which
point one or other of the alleles fix. We can now begin to construct this reduced theory.
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A. The neutral model

We have already seen that applying the condition y
(1)
i = z, y

(2)
i = (1− z) gives a line of fixed

points in the neutral model, that is A = 0; there is no deterministic dynamics along the CM. In

addition, if we denote differentiation with respect to τ by a dot, then ẏ
(2)
i = −ẏ(1)

i = −ż on the
CM. Application of the projection operator PIJ to the left-hand side of the original stochastic
differential equation (1) then gives

2D∑
J=1

V
{1}
I U

{1}
J

dxJ
dτ

=
D∑
J=1

V
{1}
I U

{1}
J κ

dz

dτ
−

2D∑
J=D+1

V
{1}
I U

{1}
J κ

dz

dτ

=
D∑
j=1

V
{1}
I u

{1}
j κ

dz

dτ
= V

{1}
I κ

dz

dτ
, (SM30)

where we have used the form for U
{1}
J given in Eq. (SM15), and also

∑D
j=1 u

{1}
j = 1, from

orthogonality with v{1}.

The projection operator can also be applied to the noise term on the right-hand side of Eq. (1)
to give

1√
V

2D∑
J=1

V
{1}
I U

{1}
J ηJ(τ) =

V
{1}
I√
V

D∑
j=1

u
{1}
j

[
(1− z) η(1)

j (τ)− zη(2)
j (τ)

]
. (SM31)

So the reduced stochastic differential equation in the neutral case may be written as

dz

dτ
=

1√
V
ζ(τ), (SM32)

where

ζ(τ) = κ−1
D∑
j=1

u
{1}
j

[
(1− z) η(1)

j (τ)− zη(2)
j (τ)

]
. (SM33)

It should be noted that since the noise depends on z, the direction of the dominant noise
component changes along the CM. From the properties of ηI , we see that the effective noise ζ
is Gaussian with zero mean and with correlator

〈
ζ(τ)ζ(τ ′)

〉
= κ−2

D∑
i,j=1

u
{1}
i u

{1}
j

[
(1− z)2B

(11)
ij

− z(1− z)B(12)
ij − z(1− z)B(21)

ij + z2B
(22)
ij

]
δ
(
τ − τ ′

)
,

(SM34)

with the BIJ being evaluated on the CM. From Eqs. (4)–(6), with x
(1)
i = κz and x

(2)
i = κ(1−z),
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one finds that

B
(11)
ii (z) =

2κz

β2
i

b(0)
i +

∑
j 6=i

µij

 ,
B

(22)
ii (z) =

2κ(1− z)
β2
i

b(0)
i +

∑
j 6=i

µij

 ,
B

(11)
ij (z) = − κz

βiβj
[µij + µji] (i 6= j) ,

B
(22)
ij (z) = −κ(1− z)

βiβj
[µij + µji] (i 6= j) , (SM35)

with B
(12)
ij = 0 and B

(21)
ij = 0. A calculation of the term in square brackets in Eq. (SM34),

allows us to arrive at the following form for the stochastic differential equation describing the
neutral dynamics after the fast-mode elimination:

dz

dτ
= Ā(z) +

1√
V
ζ(τ), (SM36)

where Ā(z) = 0 and where ζ(τ) is a Gaussian noise with zero mean and correlator〈
ζ(τ)ζ(τ ′)

〉
= B̄(z)δ

(
τ − τ ′

)
, (SM37)

and where

B̄(z) = 2κ−1z (1− z)


D∑
i=1

[
u
{1}
i

]2

β2
i

b
(0)
i −

D∑
i,j=1

u
{1}
i u

{1}
j

βj
Hij


= 2κ−1z (1− z)

D∑
i=1

[
u
{1}
i

]2

β2
i

b
(0)
i , (SM38)

since
∑

i u
{1}
i Hij = 0.

Figure 2 of the main text shows a phase diagram of the dynamics of a neutral system with
D = 2 islands in terms of the population of individuals of both alleles on one of the islands,
while Fig. SM1 does it in terms of the population of individuals of one of the alleles in both
islands. From these, we can observe the almost deterministic collapse of the stochastic system

towards the CM given by x
(α)
i + x

(β)
i = κ, with the values of a given x

(α)
i being independent of

i. After that, the dynamics are only stochastic, reflecting the fact that Ā(z) = 0 in the neutral
case.

Although the reduced neutral system given by Eqs. (SM36) and (SM37), with Ā(z) = 0 and
B̄(z) given by Eq. (SM38), is of interest, the inclusion of selection gives a far richer structure.
Since selection effects are weak, these can be included as perturbative corrections to the neutral
theory just developed.

B. The model with selection

To go on to analyse the non-neutral case we write the birth, death and competition parameters
as in Eq. (13) of the main text. We will keep order ε terms in AI(y), but only order one terms in
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BIJ(y) when carrying out the reduction. The reason for this is that we will tentatively assume
that ε and V −1 are essentially of the same order. This corresponds to keeping terms of order
ε/V and 1/V 2 in Eq. (SM6), but neglecting terms of order ε2/V, ε/V 2 and 1/V 3. Therefore the
calculation of the noise correlator in the neutral theory carried out above is sufficient, and so all
that is left is to find AI(y) on the SS to first order in ε.

To do this, we substitute Eq. (SM25) into Eq. (SM24) to find:

AI(y)|SS = ε

2D∑
K=2

w{K}λ{K}V
{K}
I + . . . , (SM39)

where the . . . once again refer to the terms in Eq. (SM23) which do not involve YI . However,

when we operate on AI(y)|SS with the projection operator PJI = V
{1}
J U

{1}
I we get zero for the

contribution shown in Eq. (SM39), since
∑2D

I=1 U
{1}
I V

{K}
I = 0 for K ≥ 2. Therefore the terms

involving YI in Eq. (SM23) give no contribution. This means that to determine Ā(z) we only
need in effect to consider

A
(1)
i (y)

∣∣∣
SS

=
ε

βi
z
{(
b
(0)
i b̂

(1)
i − d

(0)
i d̂

(1)
i

)
− c(0)

i ĉ
(11)
i κz − c(0)

i ĉ
(12)
i κ (1− z)

}
+O

(
ε2
)
,

A
(2)
i (y)

∣∣∣
SS

=
ε

βi
(1− z)

{(
b
(0)
i b̂

(2)
i − d

(0)
i d̂

(2)
i

)
− c(0)

i ĉ
(22)
i κ (1− z)− c(0)

i ĉ
(21)
i κz

}
+O

(
ε2
)
.

(SM40)

If we now act with the projection operator PJI = V
{1}
J U

{1}
I , and omit the V

{1}
J (which is plus

one for the first D entries and minus one for the last D entries), we find that

Ā(z) = εz
D∑
i=1

U
{1}
i

βi

[(
b
(0)
i b̂

(1)
i − d

(0)
i d̂

(1)
i

)
− c(0)

i ĉ
(11)
i κz − c(0)

i ĉ
(12)
i κ (1− z)

]
+ ε (1− z)

D∑
i=1

U
{1}
D+i

βi

[(
b
(0)
i b̂

(2)
i − d

(0)
i d̂

(2)
i

)
− c(0)

i ĉ
(22)
i κ (1− z)− c(0)

i ĉ
(21)
i κz

]
+O

(
ε2
)
,

(SM41)

or using Eq. (SM15) and rearranging slightly, this becomes

Ā(z) = εz (1− z)
D∑
i=1

u
{1}
i

βi

{[(
b
(0)
i b̂

(1)
i − d

(0)
i d̂

(1)
i

)
−
(
b
(0)
i b̂

(2)
i − d

(0)
i d̂

(2)
i

)]
+ κc

(0)
i

(
ĉ

(22)
i − ĉ(12)

i

)
− κzc(0)

i

[
ĉ

(11)
i − ĉ(12)

i − ĉ(21)
i + ĉ

(22)
i

]}
+O

(
ε2
)
. (SM42)

This is given in the main text as Eqs. (17)–(19).
Finally, we investigate how the model simplifies if we impose the condition that fixation

occurs on the SS at z = 0 and z = 1, that is, that when z = 1, y
(1)
i = 1 and y

(2)
i = 0, for all i

and that when z = 0, y
(1)
i = 0 and y

(2)
i = 1, for all i. Using Eq. (SM29), these conditions imply

that

2D∑
K=2

w{K}V
{K}
I

∣∣∣∣∣
z=0,1

= 0, I = 1, . . . , 2D. (SM43)

Multiplying by U
{M}
I (either at z = 0 or z = 1 as appropriate—recall that the eigenvectors

depend on z), summing over I, and using orthogonality, gives

w{M}
∣∣∣
z=0,1

= 0, M = 2, . . . , 2D. (SM44)
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From Eq. (SM28) these conditions imply that the following two quantities vanish:

D∑
i=1

U
{M}
D+i

∣∣∣
z=0

1

βi

{(
b
(0)
i b̂

(2)
i − d

(0)
i d̂

(2)
i

)
− κc(0)

i ĉ
(22)
i

}
D∑
i=1

U
{M}
i

∣∣∣
z=1

1

βi

{(
b
(0)
i b̂

(1)
i − d

(0)
i d̂

(1)
i

)
− κc(0)

i ĉ
(11)
i

}
.

(SM45)

Using Eq. (SM13) we see that the conditions for M ≤ D become trivial, whereas those for
M = m+D, m = 1, . . . ,D may be written as

D∑
i=1

β
{m}
L,i

1

βi

{(
b
(0)
i b̂

(2)
i − d

(0)
i d̂

(2)
i

)
− κc(0)

i ĉ
(22)
i

}
= 0,

D∑
i=1

β
{m}
L,i

1

βi

{(
b
(0)
i b̂

(1)
i − d

(0)
i d̂

(1)
i

)
− κc(0)

i ĉ
(11)
i

}
= 0.

(SM46)

Since the β{m}
L

are linearly independent, Eq. (22) of the main text follows. Under these conditions
the results given by Eqs. (17)–(19) of the main text can be written in the form (26) with the
effective parameters given by Eq. (25).

5. ANALYSIS OF THE REDUCED MODEL

To calculate the fixation probability and mean time to fixation, we revert to the formalism
of Fokker-Planck equations. The one-dimensional Itō stochastic differential equation (15) is
equivalent to the Fokker-Planck equation [17, 18]

∂P̄ (z, t)

∂t
= − 1

V

∂

∂z

[
Ā(z)P̄ (z, t)

]
+

1

2V 2

∂2

∂z2

[
B̄(z)P̄ (z, t)

]
, (SM47)

where P̄ (z, t) is the probability distribution function of the reduced system. Rather than the
forward equation (SM47), it is its adjoint, the backward Fokker-Planck equation [17, 18]

∂Q̄(z, t)

∂t
=
Ā(z)

V

∂Q̄(z, t)

∂z
+
B̄(z)

2V 2

∂2Q̄(z, t)

∂z2
, (SM48)

that is used in the calculation of fixation properties.
From the general theory of backward Fokker-Planck equations [17, 18] it follows that the

probability of fixation of the first allele, which we denote by Q(z0), satisfies the ordinary differ-
ential equation

Ā(z0)

V

dQ(z0)

dz0
+
B̄(z0)

2V 2

d2Q(z0)

dz2
0

= 0, (SM49)

with boundary conditions Q(0) = 0 and Q(1) = 1. The variable appearing in the equation is
z0, the initial value on the SS, since the backward equation has as its variable the initial value
of the variable appearing in the Fokker Planck equation. In Eq. (SM22) this was referred to as
zCMIC, but it will be denoted by z0 here, since there should be no confusion with the 0 label
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FIG. SM2. Fixation probability of allele 1 (top) and mean unconditional time to fixation (bottom) as
a function of the projected initial condition z0 for a system with D = 4, V = 150, and κ = 1.5. Blue
(squares): neutral case; red (triangles, dashed): case with selection showing an unstable internal fixed

point, with φ
(1)
eff ≈ −0.19, φ

(2)
eff ≈ −0.17, Γeff ≈ −0.36, and z∗ ≈ 0.53; green (diamonds, dot-dashed):

case with selection showing a stable internal fixed point, with φ
(1)
eff ≈ 1.35, φ

(2)
eff ≈ 1.9, Γeff = 3.25, and

z∗ ≈ 0.42. Symbols are obtained as the mean of 20000 stochastic simulations of the microscopic system,
while the lines correspond to the theoretical predictions for the fixation probability and mean time to
fixation, obtained from Eqs. (SM51) and (SM52) in the neutral case, and from Eq. (SM54) and the
analytical solution to Eq. (SM50) in the case with selection. The value of the selection parameter is
ε = 0.05.

used earlier for neutral quantities. The boundary conditions can be understood as follows: if
the system starts at z = 0 there is no probability of fixation of allele 1, whereas if it starts at
z = 1, allele 1 is sure to fix.

The mean time to fixation (of either allele), which we denote by T (z0), satisfies the ordinary
differential equation [17, 18]

Ā(z0)

V

dT (z0)

dz0
+
B̄(z0)

2V 2

d2T (z0)

dz2
0

= −1, (SM50)

with boundary conditions T (0) = 0 and T (1) = 0. Here the boundary conditions can be
understood by noting that if the system starts either z = 0 or z = 1, then the system immediately
fixes to either allele 1 or allele 2.

In the neutral case (ε = 0, which implies Ā = 0), it is found that [16]

Q(z0) = z0, (SM51)

T (z0) = −V 2b−1 [(1− z0) ln (1− z0) + z0 ln (z0)] . (SM52)

These analytical results are compared against simulations of the original 2D-dimensional micro-
scopic system—obtained as the mean of a large number of realisations of the process—in Figs. 4
of the main text and Fig. SM2 for the cases of D = 2 and D = 4 islands, respectively. We find
that the agreement between theory and simulation is excellent.

When selection is present, the calculation is less straightforward, but a relatively simple
expression may be obtained for Q(z0). Following Ref. [13], if Γeff 6= 0, we define

`(z0) =

√
V ε

2b|Γeff |

(
Γeffz0 − φ(1)

eff

)
. (SM53)
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FIG. SM3. Fixation probability of allele 1 (top) and mean unconditional time to fixation (bottom) as a
function of the projected initial condition z0 for a neutral system with D = 2, V = 150, and κ = 1.5,
when there is little separation between the magnitudes of the eigenvalues: λ{1} = 0, λ{2} ≈ 0.013, λ{3} ≈
0.07, and λ{4} ≈ 0.1. Symbols: mean obtained from 10000 stochastic simulations of the microscopic
system; lines: theoretical predictions for the fixation probability and mean time to fixation obtained from
Eqs. (SM51) and (SM52), respectively.

Then it is found that

Q(z0) =
1− χ(z0)

1− χ(1)
; χ(z0) =

f(l(z0))

f(l(0))
, (SM54)

where

f(l(z0)) = erfc [l(z0)] , if Γeff < 0 ,

f(l(z0)) = erfi [l(z0)] , if Γeff > 0 . (SM55)

Here erfc and erfi are respectively the complimentary and imaginary error functions [22,
23]. If Γeff = 0, then Q(z0) still has the form [1 − χ(z0)][1 − χ(1)]−1, but now χ(z0) =

exp{−V εb−1φ
(1)
eff z0}. The calculation of T (z0) is more complex, and it is preferable to simply

solve Eq. (SM50) numerically.
The results obtained from Eq. (SM54) and the solution of Eq. (SM50) in the case with

selection are again compared against simulations of the full system, and also shown in Fig. 4
of the main text and Fig. SM2 for D = 2 and D = 4, respectively. In both cases, we compare
the behaviour of the system with an unstable internal fixed point to that with a stable internal
fixed point. Compared to the neutral case, an unstable fixed point results in a shorter time to
fixation, and a stable fixed point in a longer time to fixation, as we had previously anticipated.

Unlike the two-island scenario, where the signs of ĉ
(12)
i and ĉ

(21)
i were simply reversed to switch

the stability of the fixed point, for the case with D = 4 shown in Fig. SM2 their values have
also been rescaled, due to the fact that simply switching them from positive to negative leads
to fixation times more than an order of magnitude larger than in the neutral case.

Another aspect that is interesting to explore is the nature of the timescales involved in the
collapse onto the SS (or the CM if there is no selection). We recall that the decay time of
the various fast modes is proportional to the (magnitude of the real part of the) inverse of the
eigenvalue of the Jacobian corresponding to that mode. In general the eigenvalues will depend on
the parameters of the original model in a complicated way, and the only viable route to exploring
their relative magnitudes is numerically. One question we can ask relates to the assumption of
timescale separation on which the reduction method depends. Essentially the assumption is
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that there is a significant gap between the eigenvalues associated with the slow modes and those
associated with the fast modes. This leads us to investigate parameter values for which there is
little difference in the magnitude of eigenvalues of the system. That is, we ask: how does the
reduced model perform in a case in which the timescale separation that justified the reduction
in the first place is not so pronounced?

As mentioned in the main text, a disadvantage of the SLVC model is that it doubles the
number of variables, as compared to the Moran model. It can nevertheless still be reduced to an
effective one-variable model, just as in the case of the Moran model [12, 13]. The structure of
the fast modes is however more complex. It may be possible to find a set of parameters in which
two sets of fast modes occur. For example, a faster set of D modes which involves a collapse
from a system of 2D variables to a D variable Moran type model, and then D−1 slightly slower
modes which would mirror the fast mode reduction of the Moran model [12, 13]. Similarly, it
might be possible to find another set of parameters where a faster set of 2D−2 modes reduce the
full SLVC model to an effective one island SLVC model with two degrees of freedom, and then
one slightly slower mode which would mirror the fast mode reduction of the well-mixed SLVC
model [14]. However, we expect that, for most combinations of parameter values, the different
types of fast modes will be of a similar order and inextricably mixed. In this case no clear-cut
Moran-type D-island model or SLVC effective island mode will exist as an intermediate state.

One of the few analytic results concerning the magnitude of the eigenvalues is given in Sec. 3,
where we show that a subset of D of the eigenvalues of the system, which correspond to fast
modes, are limited in magnitude by the minimum difference between birth and death rates—see

Eq. (SM19), replacing κ by (b(0) − d(0))min/c
(0)
min. This suggests that taking a small value for

(b(0) − d(0))min could lead to eigenvalues with real parts whose magnitude is small. The other
set of fast modes come from the part of the Jacobian directly proportional to the migration
coefficients µij . With the above in mind, then, we carried out simulations of the microscopic

model with small migration coefficients and b
(0)
i

>∼ d
(0)
i . The results are shown in Fig. SM3 for

a neutral system with D = 2 islands, with eigenvalues λ{1} = 0, λ{2} ≈ 0.013, λ{3} ≈ 0.07, and
λ{4} ≈ 0.1. We see that, although the approximation is not as good as in the previous cases
with more moderate parameter values, the agreement between theory and simulation is still very
good.
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