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Summary

Bacteria of the genera Photorhabdus and Xenorhabdus
produce a plethora of natural products to support their
similar symbiotic life cycles. For many of these com-
pounds, the specific bioactivities are unknown. One
common challenge in natural product research when
trying to prioritize research efforts is the rediscovery
of identical (or highly similar) compounds from differ-
ent strains. Linking genome sequence to metabolite
production can help in overcoming this problem. How-
ever, sequences are typically not available for entire
collections of organisms. Here, we perform a compre-
hensive metabolic screening using HPLC-MS data
associated with a 114-strain collection (58 Photo-
rhabdus and 56 Xenorhabdus) across Thailand and

explore the metabolic variation among the strains, mat-
ched with several abiotic factors. We utilize machine
learning in order to rank the importance of individual
metabolites in determining all given metadata. With this
approach, we were able to prioritize metabolites in the
context of natural product investigations, leading to
the identification of previously unknown compounds.
The top three highest ranking features were associated
with Xenorhabdus and attributed to the same chemical
entity, cyclo(tetrahydroxybutyrate). This work also
addresses the need for prioritization in high-throughput
metabolomic studies and demonstrates the viability of
such an approach in future research.

Introduction

Photorhabdus and Xenorhabdus are soil dwelling bacteria
that are found worldwide in association with nematodes of
the genera Heterorhabditis and Steinernema respectively
(Forst et al., 1997; Stock et al., 2001). The bacteria live in
symbiosis with their cognate nematode species and their life
cycle involves a pathogenic stage towards invertebrate
insects (Han and Ehlers, 2000). Although members of differ-
ent genera, Xenorhabdus and Photorhabdus produce a
number of shared specialized metabolites (SMs) and
occupy very similar ecological niches (Tobias et al., 2017).
Interestingly, the bacteria have yet to be isolated from the
environment as free-living organisms, but instead are
always found in association with their respective nema-
todes. Despite this specificity towards a nematode host,
bacteria–nematode pairs may be isolated from the same
geographic location.

Recently, we highlighted the extensive chemical diversity
present in these genera using high-throughput genomic and
metabolomic analyses. It appears that SMs make up a
major part of those coding sequences that were acquired
and maintained in the genera upon divergence from a com-
mon ancestor, namely, members of the Enterobacteriaceae.
We proposed that SMs, specifically products of polyketide
synthases (PKSs) and non-ribosomal peptide synthetases
(NRPSs), may be related to the given ecological niche that
each strain occupies (Tobias et al., 2017). The products of
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these enzymes in Photorhabdus and Xenorhabdus have a
range of known functions including antibiotic, signalling and
assisting in the development of the nematode host, among
others (for recent reviews of all known natural products from
these genera, see Shi and Bode, 2018; Tobias et al.,
2018a).
One argument supporting an ecological function for the

SMs is the fact that although a few compounds appeared at
first to be genus-specific, continued investigations have
identified the same clusters in the other genus. Several clear
examples of this are xenocoumacin, whose gene cluster
was recently found in Photorhabdus luminescens PB45.5
(Tobias et al., 2016) and xenorhabdin, whose gene cluster
has been found in Photorhabdus asymbiotica strains
(Wilkinson et al., 2009). Natural product research is continu-
ally encountering the problem of the best way to prioritize
research efforts relating to ‘new’ metabolites. One common
way to do this is to find ‘new’ genera or species that often
produce a new subset of SMs (Hoffmann et al., 2018). Using
their genomic information to identify biosynthetic gene clus-
ters that often produce bioactive compounds, such as PKSs
or NRPSs, and subsequently activating ‘silent’ clusters to
specifically stimulate production of the metabolite is a com-
mon approach. However, in the absence of genetic informa-
tion, this becomes increasingly difficult. Tools such as
Global Natural Product Molecular Networking Social
(GNPS; Wang et al., 2016), Sirius (Böcker et al., 2009),
MZmine (Katajamaa et al., 2006; Pluskal et al., 2010),

DEREPLICATOR+(Mohimani et al., 2018) and others have
recently been developed for dereplication of MS/MS data.
These have also been linked to several databases, which
can assist in quickly identifying compounds absent in these
databases. However, prioritizing the continued research and
development of these unexplored metabolites is still a major
problem.

Here, we describe the use of a machine learning model
in order to explore the metabolomes of geographically dis-
tinct strains of Photorhabdus and Xenorhabdus from differ-
ent regions in Thailand. We explored metabolic potential in
relation to the environment in which they were collected,
identified known compounds and prioritized the structure
elucidation of one of the metabolites whose presence was
most determining in distinguishing Xenorhabdus from Pho-
torhabdus. Despite a number of long-standing hypotheses
suggesting that metabolite production is specific to each
strain (and its respective environment), this is the first time
it has been empirically tested.

Results

Strain collection and processing

Strains selected for this study were collected from a vari-
ety of areas across central Thailand (Fig. 1, Supporting
Information Table S1). Following isolation of the bacteria,
each species was identified by sequencing and alignment

Fig. 1. (A) Location and (B) spread of metadata associated with the 114 Photorhabdus and Xenorhabdus strains collected from Thailand. For
specific metadata values, see Supporting Information Table S1.
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of the recA coding sequence to the NCBI database (see
Supporting Information Table S1 for NCBI accession num-
bers). Our aim was to explore as big a metabolite reper-
toire as possible. We therefore cultivated in two different
media; Lysogeny broth (LB; nutrient rich) and SF900
(an insect-like medium); extracted each culture indepen-
dently and combined the final results. Methanol was used
to extract the cultures directly in equal volumes, which pro-
vided a robust data set on which to perform further ana-
lyses. Acetonitrile blanks and media only were used to
subtract background masses while E. coli (a close relative
of Xenorhabdus and Photorhabdus) was additionally used
in order to determine metabolites that were not likely spe-
cific to the Xenorhabdus and Photorhabdus. The com-
bined analysis identified a total of 44,836 molecular
features after removing background features (LB, SF900,
acetonitrile and E. coli in both media). MS data sets can
be found under public MassIVE ID: MSV000083378 and
the combined network analysis can be downloaded at
http://gnps.ucsd.edu/ProteoSAFe/status.jsp?
task=02057a6b9eb54048847c9dd18746aac9.

Network analysis

Network analysis was performed on the complete collection of
strains using GNPS (Wang et al., 2016) and Cytoscape
(Shannon et al., 2003) for visualization (Fig. 2). Xenorhabdus
had a greater number of uniquemolecular features (3265) than
the Photorhabdus (1791). A total of 261 networks with three or
more nodes were formed (Fig. 2). Of these, 14 families of com-
pounds could be identified based on previously published
studies, leaving a majority of networks still completely
unexplored. Use of GNPS and its resulting network analyses
revealed a number of networks containing known compounds.
These networks group metabolites with structural similarity
based on their fragmentation patterns (Wang et al., 2016). We
assume that all nodes within a given network belong to the
samemetabolite family. We have shown in Photorhabdus and
Xenorhabdus that this is indeed often the case, as described
in our previous work (Tobias et al., 2017). Despite providing a
broader perspective on the presence and absence of metabo-
lite families, what this fails to address is whether or not these
nodes and/or metabolites are important in defining any vari-
ables that may be interesting for further investigation.

We have discussed at length the possibility for analogous
functions by different Photorhabdus- or Xenorhabdus-spe-
cific compounds (Tobias et al., 2017), which would help
explain the reasons they live such a similar lifestyle. How-
ever, as is clear from Fig. 2, there is still a significant number
of metabolite clusters yet to be explored. This begs the
question as to where we should focus our research efforts in
looking for unknown and important compounds, with respect
to both the bacterial ecology and natural product discovery.
We therefore decided to utilize machine learning in order to

prioritize compounds and their investigations, with an end-
goal of researching metabolites that are likely to be both
undiscovered and specific.

Machine learning to explain metadata

Our data consisted of a total of 114 different strains,
coupled to seven abiotic metadata points; two media

Fig. 2. Network analysis of all 114 isolates. Shown is a summary of
all nodes with at least two connections in Photorhabdus and
Xenorhabdus. Known subnetworks are also highlighted: RXP,
rhabdopeptide; GXP, GameXPeptide; XVP, xentrivalpeptide; PAX,
PAX peptide; AQ, anthraquinone; PEA, phenylethylamide; XFP,
xefoampeptide; CHD, cyclohexanedione; LZ, luminizone; RDC, rhab-
duscin; PA, pyrrolizidine alkaloids; XBN, xenobactins; XMT,
xenematide/xenoprotide; 1, (cyclo)tetrahydroxybutyrate; 2, network
containing signal with m/z of 487.18. For a closer view of the network
containing 1, see Supporting Information Fig. S3.
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conditions, four soil types, 10 provinces representing
rough geographic relatedness, soil pH, soil temperature,
soil moisture and elevation above sea level. In order to
explore our data in more detail and determine what, if
any, of these abiotic factors could be distinguished by uti-
lizing metabolite production, we turned to machine learn-
ing. We utilized a gradient boosting decision tree (GBDT)
algorithm in order to train the model on the full data set,
as well as a reduced data set consisting of highly corre-
lated signals (see Methods section).
Training the model on the full versus the pruned and clus-

tered datasets (Supporting Information Fig. S1) results in
essentially the same performance (Supporting Information
Table S2). An initial analysis failed to show any significant
impact of the abiotic data on metabolite production. Addi-
tionally, both randomizing and removing geographical meta-
data from the data set did not result in a performance drop.
We incorporated SHapley Additive exPlanations (SHAP)
values into our model in order to determine the importance
of individual features on model output. For both AUC (area
under the curve) and intensity data sets with low levels of
clustering, we see that a small number of metabolites
strongly affect the output of all samples, and seem to do so
in a well-delimited fashion (Fig. 3). The impact of a few
others is not as strong, but retain the latter property.

Structure elucidation of top-ranking feature(s)

Multiple metabolites seemed to be independently capable of
discerning between genera with a high degree of accuracy.
In particular, the top three single-feature predictors pos-
sessed the same retention times withm/z of 155.07, 368.14
and 367.13 respectively (Supporting Information Fig. S2).

All three of these metabolites were highly correlated, with
the third compound additionally identified in the network
analysis (Fig. 2, Supporting Information Fig. S3) and pro-
duced in large amounts in a strain of X. szentirmaii (see
Methods section).

Compound 1, obtained as a colourless crystal, has the
molecular formula C16H24NaO8 as deduced from its HR-
ESI-MS at m/z 367.1366 [M + Na]+ (calcd for C16H24NaO8,
367.1363) in combination with 1H and 13C NMR data
(Supporting Information Table S3 and Supporting Informa-
tion Figs. S14–S18). By comparing its spectroscopic and
single-crystal X-ray diffraction data with those reported pre-
viously in literature, it was identified as (4R,8R,12R,16R)-
4,8,12,16-tetramethyl-1,5,9,13-tetraoxacyclohexadecane-2,
6,10,14-tetrone, a cyclic tetramer of (R)-3-hydroxybutyrate
(Fig. 4, Supporting Information Table S3) (Plattner et al.,
2004; Riddell et al., 2004). The presence of the signal with
an m/z of 155.07 (Fig. 4A and B) can also be explained by
the structure of 1 (Fig. 4C) with ester bond cleavage
followed by the elimination of water (Fig. 4A), while the sig-
nal with m/z of 368.14 is the 13C isotope of 1.

Single features are capable of discerning genera with
high accuracy

Higher clustering (lower correlation thresholds) of the
metabolite data resulted in the signal with an m/z of
155.07, being identified as having, by far, the largest
influence in model output in all cases (Supporting Infor-
mation Fig. S4–S9). Focusing on all metabolites belong-
ing to the same cluster as this metabolite, as well as
those belonging to the clusters represented by the
metabolites ranked second and third by SHAP values,
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Fig. 3. SHAP output of the GBDT model
constructed using intensity values. The
value represents the impact of a given
feature in determining whether an isolate
is Photorhabdus or Xenorhabdus. The
m/z ratios and retention times are indi-
cated for the top 10 ranking features.
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we proceeded to retrain the model, employing as a fea-
ture only one metabolite at a time. We found that the
three best single predictors in terms of receiver operating
characteristic – area under the curve (ROC-AUC) for both
the intensity and AUC data corresponded to signals with
an m/z of 155.07, 368.14 and 367.14 (Fig. 3). These can
be used as sole predictors while maintaining a very high
performance, equivalent to using the full set of metabo-
lites (Supporting Information Table S4).

To explore whether the three top ranking features, all
belonging to the same cluster of signals, significantly
impacted the model’s performance, we removed all features
associated with this cluster and recalculated the model. The
resulting top-ranking feature and its highly correlated fea-
tures were again removed and the model recalculated a third

time for comparison. The performance after removing these
clusters remained high at 95.2% � 1.44% and 95% � 1.3%,
respectively, with other signals showing a highly discrimina-
tory effect between Photorhabdus and Xenorhabdus
(Supporting Information Figs. S10 and S11). However, the
top three clusters all related to features present in the
Xenorhabdus and absent in Photorhabdus. We therefore
identified features that were negatively correlated with the
top-ranking cluster and used this as a sole predictor for the
genera. In essence, the original model was able to predict a
Photorhabdus by the absence of the three aforementioned
top-ranking features. By using a negative correlation, we
aimed to identify compounds that were present in a majority
of Photorhabdus, but absent in Xenorhabdus. This resulted
in the identification of a signal with an m/z of 487.19
(predicted sum formula: C26H25N5O5), whose fragmentation
pattern suggests it might be a peptide (Supporting Informa-
tion Fig. S12). Additionally, this metabolite was also detected
in the network analysis, albeit in a much smaller cluster of
nodes (Fig. 2). Using this feature as a sole predictor of genus
resulted in a performance of 92.9%� 2.99%.

Model testing on unseen data

Fourteen Photorhabdus and 15 Xenorhabdus were ran-
domly selected from the strain collection used for gener-
ating the original model, grown and extracted from both
media types, in triplicate. These new HPLC-MS runs,
unseen by the model during training, were used to test its
general performance. From the metabolites present in
the data, we located the closest match (see Methods
section) for each of the three previously identified best
predictors and obtained the class probabilities for each
sample. In all cases, the single-feature models were able
to correctly classify the genera of the samples with
92.0%–96.5% accuracy. The results are summarized in
Supporting Information Table S5.

Discussion

Typically, the similarities between Photorhabdus and
Xenorhabdus are highlighted, particularly with respect to
their life cycles. While these similarities hold true, several
recent efforts have sought to decipher their differences and
what makes these genera unique (Chaston et al., 2011;
Tobias et al., 2017). Our recent work approached this from
more of a genomic perspective, while here we attempt to
answer this same question using metabolomics as a guide.

It is known that Photorhabdus and Xenorhabdus are
capable of infecting different insect species leading to pro-
foundly different experimental outcomes. This is probably
because of the number of compounds which, generally
speaking, suppresses the innate insect immune response
(Tobias et al., 2018a). What we do not know, however, is

Fig. 4. Structure of (4R,8R,12R,16R)-4,8,12,16-tetramethyl-
1,5,9,13-tetraoxacyclo hexadecane-2,6,10,14-tetrone (1). The struc-
ture (A) and the fragment responsible for the signal at m/z 155 (B) is
indicated as well as the ORTEP representation of its crystal structure
(CCDC 1880748) (C).
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the degree of dependence that the bacteria have upon their
repertoire of metabolites to adapt to the abiotic environment.
Interestingly, these bacteria have not yet been isolated as
free-living organisms; only in conjunction with their cognate
nematode symbionts. We wanted to explore the hypothesis
that strains collected in geographically different and abiotically
diverse environments (pH, soil type, soil temperature, soil
moisture, elevation above sea level) produce different metab-
olites, specific to that environment, thereby maintaining some
form of localized niche despite the mobility afforded by nema-
tode hosts.
A large collection of Xenorhabdus and Photorhabdus

strains was acquired from Thailand, including a number
of samples collected from the same geographic locations
(Fig. 1). Once isolated, we hypothesized that, by growing
the strains under different conditions and collating the
data, we would have a data set that represented the met-
abolic potential of each of the 114 strains. For that rea-
son, we grew the strains in a rich media (LB) in order to
provide an environment whereby it would not be disad-
vantageous (from an energy perspective) to produce
compounds and also in SF900, an insect culture medium
that reflects the environment these strains may encounter
within an insect. A network analysis of the 58 Photo-
rhabdus and 56 Xenorhabdus was performed using the
GNPS platform, which examines mass differences and
fragmentation patterns between metabolites in order to
determine whether they are likely to be related from a
chemical perspective. Despite the overrepresentation of
some species in this collection, a combined network anal-
ysis of the 114 strains in both media highlights the chemi-
cal diversity present in Thailand by entomopathogenic
bacteria, regardless of species (6890 nodes, Fig. 2). Our
previous work annotated a number of metabolites from
both Photorhabdus and Xenorhabdus and using this
library, we identified 14 networks containing known clus-
ters of metabolites (Fig. 2). It is also clear from these
analyses that there are a number of major metabolite
families that we have yet to identify. Furthermore, it is
known that both Photorhabdus and Xenorhabdus have
several different mechanisms at their disposal to help
generate natural product diversity from a single gene
cluster (Cai et al., 2016; Tobias et al., 2018b). In fact, the
rhabdopeptides are known to be virulence factors
towards insects and have an unusual mechanism of gen-
erating SM variation by altering the stoichiometry of each
module (Cai et al., 2016). This variation may actually con-
tribute to the ability of these bacteria to infect different
insects, adapting to different insects primarily by altering
protein expression levels. In this analysis, we see a large
number of features (330) in the network containing known
rhabdopeptides (Fig. 2). If this is a major factor conferring
virulence to the bacteria, this might be indicative of an
insect-specific adaptation.

These bacteria are of general interest due to their SM
producing abilities. A recent rarefaction analysis of all
sequenced Xenorhabdus and Photorhabdus genomes sug-
gests that sequencing of a new species would yield, on
average, one additional biosynthetic gene cluster per spe-
cies sequenced. Notably, a recent study in Myxobacteria
highlights the fact that strain collections with a threshold of
taxonomic diversity and coverage is required in order to rap-
idly identify compounds with a high likelihood of containing
structural novelty (Hoffmann et al., 2018). In this analysis,
there was a large overrepresentation of X. stockiae species,
but several new derivatives of known compounds. While we
do not dispute that structural novelty is important, we do
observe that natural structural diversity present in bacteria
that make compound libraries may also be important for
structure–function studies. To that effect, the generation of
new derivatives of known SM from these bacteria, through
in vitro combinatorial biosynthesis, is ongoing with a view to
identifying compounds with higher bioactivities (Bozhüyük
et al., 2017). What our analysis suggests is that there is a
strong possibility that many of these derivatives may also
exist ‘naturally’ in the environment as evidenced by the
extensive molecular networks containing ‘known’ com-
pounds. Despite the apparent abundance of new deriva-
tives, this also suggests that our prediction of one new SM
per species is a significant underestimation if we consider
unknown derivatives.

Recently, it was found that genes in strains isolated
from similar environments, which are also the same spe-
cies, contain a number of differences at the genetic level
(Murfin et al., 2015). We envisaged that we may therefore
be able to differentiate between different metadata based
upon each strain’s unique metabolome. We used the
compiled metabolomic data, together with the metadata,
to train a machine learning model; in particular, we chose
to make use of GBDTs. Models of this type enjoy a high
level of popularity due to their high efficiency and the
state-of-the-art performance, as well as the availability of
fast, ready-to-use implementations. In addition to this,
they tend to perform well, even in very-high-dimensional
scenarios, especially in cases when the features outnum-
ber the samples or observations, a phenomenon com-
monly referred to as the ‘curse of dimensionality’(Mayr
et al., 2014; Nielsen, 2016). As such, GBDT models are
ideally suited for the type of data we are dealing with –

and metabolomics data in general – having tens of thou-
sands of metabolites for a few hundred samples.

In addition to the above, GBDT models are also robust
to multicollinearity between features. As seen from the
results, the model does not suffer a performance drop
when highly correlated metabolites are present. Never-
theless, we decided to cluster the metabolites, and drop
correlated variables, for interpretability reasons: faced
with two or more highly correlated features that are very
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good predictors, the model will greedily choose to split on
one of them in detriment of the others. In other words,
features that are otherwise highly discriminatory will have
their impact underestimated in the ranking of importance.

One weakness in studies such as this is the use of arti-
ficial in vitro culture conditions to explore the metabolic
diversity. Underpinning this is the range of soil pH (5.2–7)
and temperatures (18–32�C) associated with the strains
in the present study. Since we were interested in meta-
bolic potential, we made the decision to culture all strains
under standard laboratory conditions. However, one
future analysis could include the growth and subsequent
metabolite extraction under more refined conditions. In
comparative genetic studies, we typically compare whole
genomes to draw inferences on the data, thus basing
future hypotheses on the genetic potential, rather than
gene expression. In the same principle, we base our con-
clusions here on metabolic potential and work towards
overcoming the limitations associated with the non-
natural environment by using different conditions and col-
lating the data. Given that no evidence was seen for
metadata influencing metabolite production, we used a
machine learning model to investigate the differences
between Photorhabdus and Xenorhabdus. During train-
ing of the model, SHAP values were obtained in order to
assess and rank the impact of the feature values on
model output. Our reasoning behind this was that we
could then prioritize metabolites for purification and
chemical structure elucidation. We chose SHAP values
as our measure of importance, because they provide per-
sample explanations that are proven to be both consis-
tent and locally accurate, as opposed to GBDTs built-in
measures (Lundberg and Lee, 2017; Lundberg et al.,
2018), in addition to being a model-agnostic feature attri-
bution approach that does not require the model to be
tree-based.

From the SHAP results, we observe that while only a
few metabolites – exactly one, for the most heavily clus-
tered data – have a very large impact on model output in
comparison with the rest, many more seem to be strong
discriminators between classes, as evidenced by the col-
ouring of their values and the direction of their impact,
despite the latter being relatively low. Indeed, removal of
the most important cluster from the data set still resulted
in very high classification performance when taking all
other metabolites in consideration (Supporting Informa-
tion Fig. S10). Single-feature predictions, however, do
suffer from a steeper performance drop than the metabo-
lites we have identified as the best predictors. Therefore,
we emphasize that we have not attempted to find the
‘only’ metabolites that set these two genera apart, but to
prioritize the ones that appear to be the strongest in
doing so. The relevance of this and the usefulness of
single-feature models become apparent when dealing

with new, unseen data: in the case presented here, the
test data set contains 15,098 metabolite columns, which
renders futile any attempt at full data set peak matching.

A recent study in Australia examined the differences
between the biosynthetic domain compositions in soil
across the continent. One key finding from this was that
the composition of natural product domains, specifically
ketosynthase domains (from PKS) or adenylation domains
(from NRPS), changed with latitude and longitude and was
often grouped in accordance with the vegetation type
(Lemetre et al., 2017). This supports our original premise
that natural product composition from the Xenorhabdus
and Photorhabdus may change within the country. How-
ever, in our analysis, we saw no clear clustering of strains
based on any of the abiotic factors measured. Considering
that the bacteria have never been isolated independent of
the nematode, several explanations exist for the lack of
obvious metabolite clustering in different environments.
One explanation is that the nematodes, and the insects
that they infect, are all motile and may help spread the bac-
teria in the environment, thus confounding any underlying
association with geography. One further explanation is that
the nematode hosts provide the greater support in these
environments. In turn, the SMs produced by the bacteria
then provide specificity for the host and the invertebrate
prey. This would actually point towards a dependence of
the bacteria upon the nematode in the environment, an
area that has not been widely investigated due to the rela-
tive simplicity to investigate the bacteria independently in a
lab environment.

Purification of compound 1 resulted in elucidation of a
cyclic tetramer of hydroxybutyrate (Fig. 4), a compound
related to crown ethers. Crown ethers typically demon-
strate a high affinity to cations and are often cytotoxic, but
may also show characteristics of ionophores. Ionophores
in natural biological systems help to transport ions across
cell membranes by forming lipid-soluble complexes with
polar cations (Bakker et al., 1997). Given the probable
influence of nematode host on metabolite production, one
explanation for the specific presence of these compounds
in Xenorhabdus could be that they are required during the
symbiosis with Steinernema. While this is probably not a
ubiquitous requirement since the compound was not
detected in all species of Xenorhabdus (Supporting Infor-
mation Fig. S13), it is interesting that the majority of the
Xenorhabdus, with the exception of X. szentirmaii, were
originally isolated in South East Asia. One interesting note
is that the nematode hosts of X. szentirmaii (Steinernema
rarum) and X. stockiae (Steinernema siamkayai) are close
evolutionary relatives (Stock, 1998), supporting a possible
role of this metabolite in symbiosis.

One major challenge in large-scale metabolomic studies
is how to prioritize research efforts. Here, we set out an
analysis pipeline that is capable of using strain-specific
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metadata, coupled with high-throughput MS experiments.
Whether it is determining compounds important for an eco-
logical niche or identifying as yet undiscovered compounds
in large high-throughput screening experiments. By incor-
porating machine learning models such as this into current
analysis pipelines, the relative importance of compounds
can be determined in order to streamline purification and/or
structure elucidation pipelines in a time-efficient manner,
yielding low probabilities of rediscovery.

Materials and methods

Soil collection

Samples were taken from diverse habitats including natu-
ral grassland, roadside verges, woodlands and banks of
ponds and rivers. For each site, five soil samples were
randomly taken in an area of approximately 100 m2 at a
depth of 10–20 cm using a hand shovel. Approximately
500 g of each soil sample was placed into a plastic bag.
The longitude, latitude and altitude of each sampling site
were recorded using a GPSMAP 60CSx (Garmin, Taiwan).
The temperature, pH and moisture of each sample were
recorded using a Soil pH & Moisture Tester (Model: DM-15,
Takemura electric works, Ltd., Japan).

Isolation of Xenorhabdus and Photorhabdus bacteria
from entomopathogenic nematodes

Dead Galleria mellonella larvae were surface-sterilized by
dipping into absolute ethanol for 1 min and placed in a sterile
petri dish to dry. Sterile forceps were used to nip the third
ring from the head of G. mellonella, thereby removing the
cuticle. A sterile loop was used to touch haemolymph of G.
mellonella and streaked onto a nutrient bromothymol blue
agar supplemented with 0.004% (w/v) triphenyltetrazolium
chloride (TTC, Sigma, St. Louis, KS) and 0.0025% (w/v)
bromothymol blue (Akhurst, 1980). TTC was added to inhibit
the growth of Gram-positive, acid-fast bacteria and actino-
mycetes. Cultured plates were incubated in the dark at room
temperature for 4 days. Xenorhabdus and Photorhabdus
strains were characterized based on colony morphology as
described by Boemare and Akhurst (Boemare and Akhurst,
1988). Single colonies were then subcultured on the same
medium and kept in Luria-Bertani (LB) containing 20% glyc-
erol at −80�C for further identification.

Bacterial identification

DNA was extracted using a Genomic DNA Mini Kit (blood/
Cultured Cell) (Geneaid Biotech Ltd., Taiwan). Polymerase
chain reaction (PCR) targeting recA was performed in 50 μl
volumes using 10 μl of 5× buffer (Promega, Madison, WI),
7 μl of 25 mM MgCl2 (Promega, Madison, WI), 1 μl of

200 mM dNTPs (New England Biolabs Inc., Ipswich, MA),
2 μl of 5 μM of each Primer, 0.5 μl of 5 unit Taq Polymerase
(Promega, Madison, WI) and 2.5 μl of DNA template. The
recA primer sequences were recA1_F (5’-GCTATTGA
TGAAAATAAACA-30) and recA2_R (5’-RATTTTRTCWCC
RTTRTAGCT-30) (Tailliez et al., 2010).

PCR cycling parameters for recA of Xenorhabdus
included an initial denaturing step of 94�C for 5 min,
followed by 30 cycles of denaturation at 94�C for 1 min,
annealing temperature of 50�C for 1 min and extension of
72�C for 2 min and a final extension of 72�C for 7 min.
Parameters for Photorhabdus included an initial denatur-
ing step at 94�C for 5 min, followed by 30 cycles of 94�C
for 1 min, 50�C for 45 s and 72�C for 1.5 min, with a final
extension of 72�C for 7 min. The PCR products of recA
of both genera (890 bp) were examined on 1.5% agarose
gel electrophoresis. Fifty microlitres of PCR products
were purified using Gel/PCR DNA Fragments Extraction
Kit (Geneaid Biotech Ltd., Taiwan). recA sequencing was
performed on the ABI PRISM 3100 Genetic Analyzer
(Amersham Bioscience, UK) using the PCR primers for
PCR. Chromatograms, sequence ambiguity resolution were
visually checked using the SeqManII software (DNASTAR
Inc., Wisconsin). Species identification was performed using
a nucleotide Blast search of recA against the NCBI nucleo-
tide database and the match with the highest similarity score
was selected (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Multiple
nucleotide sequences representing all of the known species
and subspecies of Photorhabdus and Xenorhabdus spp.
were downloaded from the NCBI database (http://blast.ncbi.
nlm.nih.gov/Blast.cgi), aligned with sequences from the
study isolates and trimmed to a 646 bp region using
ClustalW (Thompson et al., 1994) in MEGA version 5.0
(Tamura et al., 2011). Maximum likelihood trees were
reconstructed using Nearest-Neighbour-Interchange (NNI)
and Tamura–Nei model (Tamura and Nei, 1993) using
MEGA version 5.05 (Tamura et al., 2011). Bootstrap analy-
sis was carried out with 1000 data sets.

Metabolite extraction

Bacterial cultures were grown in either SF900 media or LB for
72 h at 30�C. A 1 ml sample was taken from each culture and
extracted with an equal volume of methanol, mixed briefly by
vortexing and centrifuged for 30 min. The resulting superna-
tant was dried under a constant stream of nitrogen gas, to
completion. Prior to measurement, samples were resus-
pended in 500 μl ofmethanol and centrifuged for 30 min.

Ultraperformance liquid chromatography high-resolution
mass spectrometry measurements

UPLC-ESI-HRMS/MS analyses were performed using an
UltiMate 3000 system linked to a Bruker Impact II qTof
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mass spectrometer. Runs were performed using a flow
rate of 0.4 ml min−1 and gradient of MeCN/0.1% formic
acid in H2O (5:95% to 95:5% over 15 min). Data acquisi-
tion was performed as previously described (Tobias
et al., 2017).

Molecular networking analysis

The raw MS data of 114 environmental isolates, E. coli
(all in LB and SF900), LB, SF900 and acetonitrile blanks
were converted to the .mzXML format using DataAnalysis
v4.3 (Bruker). Molecular networks were created using the
online workflow at GNPS (Wang et al., 2016). The data
were then clustered with MS-Cluster with a parent mass
tolerance of 0.05 Da and a MS/MS fragment ion toler-
ance of 0.01 Da to create consensus spectra. Further,
consensus spectra that contained less than two spectra
were discarded. A network was then created where
edges were filtered to have a cosine score above 0.7 and
more than 6 matched peaks. Further edges between two
nodes were kept in the network if and only if each of the
nodes appeared in each other’s respective top seven
most similar nodes. The spectra in the network were then
searched against GNPS’ spectral libraries. All matches
kept between network spectra and library spectra were
required to have a score above 0.7 and at least six mat-
ched peaks. Analogue search was enabled against the
library with a maximum mass shift of 100.0 Da. The self-
loop networks were imported into Cytoscape (v3.4.0) for
visualization.

Feature identification

Mass spectrometry files were imported into DataAnalysis
(v4.3) and converted from the Bruker .m format to the open
mzXML format for processing with MZMine2 (Pluskal
et al., 2010). After import, mass detection was performed
with the mass detector set to centroid, noise level to 1000,
at MS level 1 and with a retention time of 0–16.05 min.
Chromatograms were then built with the retention time
between 0 and 16.05 min, MS level 1, a minimum time
span of 0.02, a minimum height of 1000 and an m/z toler-
ance of 0.005 m/z or 5.0 ppm. Peak deconvolution was
performed with the noise amplitude algorithm, a minimum
peak height of 1000, peak duration in the range 0–0.8 min
and an amplitude of noise set to 5000.

The peak aligner was then set with an m/z tolerance of
0.005 m/z or 5.0 ppm, the weight of m/z at 20, retention
time tolerance at 3% relative, weight for retention time of
10, with peaks requiring the same charge state and ‘com-
pare isotope pattern’ set to yes with the setting for isotope
m/z tolerance 0.005 m/z or 5.0 ppm, a minimum absolute
intensity of 1000, and a minimum score of 65%. Gap filling
was then used using the ‘same RT and m/z range gap

filler’ with m/z tolerance set to 0.005 m/z or 5.0 ppm. The
aligned, filled mass list was then exported as a .csv file.

Machine learning data preprocessing

In order to determine the importance of compounds, we
decided to employ a machine learning model. In conjunc-
tion with a recently developed feature attribution method,
this serves the twofold purpose of achieving a very high
performance in discriminating between the two genera,
yielding a model that can be subsequently used to clas-
sify new data, while at the same time allowing for a direct
visualization of the features that have the largest impact
on the model’s predictions for each of the samples.

The intensity and AUC data obtained from the
MZmine2 peak picking algorithm were used. As a first
step, we generated an additional data set by setting to
zero all AUC entries for which the corresponding peak
intensity was zero. Samples were further processed by
removing all columns corresponding to metabolites that
were absent in all of the samples after deletion of E. coli,
media only and acetonitrile blanks, since they would not
contribute to the classification. In addition to this, we
removed all columns with less than c. 10% of non-zero
values. The data were further cleaned up by clustering
the metabolite columns according to their correlation
across samples and discarding all but one of the mem-
bers of any one cluster; the correlation thresholds used
were 0.9, 0.95 and 0.99. Numerical metadata was scaled
between 0 and 1 for pH, temperature and moisture, while
the elevation, spanning three orders of magnitude, was
converted into logarithmic scale. Location data, in turn,
was kept to the level of province and one-hot-encoded;
soil type and medium data were also one-hot-encoded.
The smallest resulting data set consisted of 20,650 and
21,634 metabolite columns, out of a total of 44,836, for
the intensity and zeroed AUC data, respectively, plus
20 metadata columns: 2 media conditions, 4 soil types,
10 provinces, pH, temperature, moisture and elevation.

Generating a model

The pruned data sets from the previous section were
used to train a GBDT model. Here, we used the Python
implementation of LightGBM (Ke et al., 2017) to train a
classifier on the pruned intensity and AUC data sets. We
used 250 iterations, with 50 iterations as the threshold for
early stopping, defined as the number of steps the model
can take without improvements on the evaluation metric.
The latter is calculated from the predictions of the model
for a pre-defined validation set. To this end, we per-
formed 100 rounds of fivefold cross-validation on the data
sets, and report the resulting mean and standard devia-
tion of the mean accuracy and ROC-AUC across folds.

© 2019 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 21, 2921–2932

Machine learning for metabolite prioritisation 2929



Determining feature importance

In order to interpret the predictions from the GBDTmodel and
determine the most important features driving its output, we
computed the SHAP values for each feature and averaged
them over all the training rounds. The values are individual-
ized per sample and correspond to the change in log-odds of
the sample being classified as corresponding to one or the
other genus – in this case, a positive value indicates a larger
probability of being Xenorhabdus – relative to the mean pre-
diction upon addition of a given feature, effectively measuring
the impact that every feature value has on every sample. This
was carried out using the tree ensemble implementation of
the SHAP Python package (Lundberg et al., 2018).
All code used for this paper is available at https://github.

com/systemsmedicine/geographical-chemotypes as Jupyter
notebooks, providing a step-by-step walkthrough.

Compound isolation and purification

For the isolation and purification of (4R,8R,12R,16R)-
4,8,12,16-tetramethyl-1,5,9,13-tetraoxacyclohexadecane-
2,6,10,14-tetrone, the XAD-16 resin from a 4 l M63 medium
culture of X. szentirmaii_P1 (phenazine gene cluster knock-
out) mutant (Shi et al., 2019) were harvested after 72 h of
incubation at 30�C with shaking at 120 r.p.m., washed with
water and extracted with methanol (3 l × 1 l) to yield the
crude extract (1.1 g) after evaporation. The extract was dis-
solved in methanol and was subjected to preparative
HPLC-MS with C-18 column (21.2 mm × 250 mm, 7.0 μm,
Agilent) using an acetonitrile/water gradient (0.1% formic
acid) in 30 min, 5%–95% to afford a sub-fraction mainly
containing 8.3 mg. The sub-fraction was further purified by
semipreparative HPLC with C-18 column (9.4 mm × 250 mm,
5.0 μm, Agilent) using an acetonitrile/water gradient (0.1%
formic acid) 0–30 min, 30%–45% to afford (4R,8R,12R,16R)-
4,8,12,16-tetramethyl-1,5,9,13-tetraoxacyclohexadecane-
2,6,10,14-tetrone (2.1 mg). 1H and 13C NMR, 1H-13C
Heteronuclear Single Quantum Coherence (HSQC), 1H-13C
Heteronuclear Multiple Bond Correlation (HMBC), and 1H-1H
Correlation Spectroscopy (COSY) were measured. Chemical
shifts (δ) were reported in parts per million (ppm) and
referenced to the solvent signals. Data are reported as follows:
chemical shift, multiplicity (d = doublet, dd = doublet of doublet,
andm=multiplet), and coupling constants inHertz (Hz).
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Supplementary Fig. S1. Clustering of features of either
intensity or AUC was performed using three different correla-
tion cutoffs; 0.9, 0.95 and 0.99. These clusters can be
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Supplementary Fig. S2. Representative extracted ion chro-
matograms of the top 3 ranking features as determined by
the machine learning model.
Supplementary Fig. S3. Network containing 1 showing par-
ent masses inside nodes and edges representing mass dif-
ferences between metabolites.
Supplementary Fig. S4. SHAP values were generated on
models following the clustering of intensity data based upon
a correlation cut-off of 0.9.
Supplementary Fig. S5. SHAP values were generated on
models following the clustering of intensity data based upon
a correlation cut-off of 0.95.
Supplementary Fig. S6. SHAP values were generated on
models following the clustering of intensity data based upon
a correlation cut-off of 0.99.
Supplementary Fig. S7. SHAP values were generated on
models following the clustering of AUC data based upon a
correlation cut-off of 0.9.
Supplementary Fig. S8. SHAP values were generated on
models following the clustering of AUC data based upon a
correlation cut-off of 0.95.
Supplementary Fig. S9. SHAP values were generated on
models following the clustering of AUC data based upon a
correlation cut-off of 0.99.
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Supplementary Fig. S10. All features associated with the
top-ranking cluster were removed and the model was rec-
alculated. The top 10 highest ranking features are shown
based on the output of SHAP. Performance metrics can be
seen in Supplementary Table 4.
Supplementary Fig. S11. All features associated with the
top two ranking clusters were removed and the model was
recalculated. The top 10 highest ranking features are shown
based on the output of SHAP. Performance metrics can be
seen in Supplementary Table 4.
Supplementary Fig. S12a. Base peak chromatogram of a
representative Photorhabdus strain (number 448), (b) with
an extracted ion chromatogram of the signal with the highest
negative correlation to 1 and m/z of 487.186. (c) The frag-
mentation pattern of this compound, 2, is also shown.
Supplementary Fig. S13. Extracted ion chromatograms of
other Xenorhabdus species containing the (cyclo)
tetrahydroxybutyrate (1).
Supplementary Fig. S14. 1H NMR spectrum of 1 in DMSO-d6.
Supplementary Fig. S15. 13C NMR spectrum of 1 in DMSO-d6.
Supplementary Fig. S16.HSQC spectrum of 1 in DMSO-d6.
Supplementary Fig. S17. HMBC spectrum of 1 in DMSO-d6.
Supplementary Fig. S18. 1H-1H COSY spectrum of 1 in
DMSO-d6.

Supplementary Table S1. All metadata associated with
isolates.
Supplementary Table S2. Performance of gradient boosting
decision tree model on full data set compared to that of the
pruned and clustered data. Clustered data is shown with dif-
ferent cutoff thresholds. All models were calculated using
both intensity data and area under the curve (AUC). The
degree of clustering can be seen in Supplementary Fig. S1.
Supplementary Table S3. 1H (500 MHz) and 13C (125 MHz)
NMR data assignments for 1 in DMSO-d6 (for NMR spectra
see Fig. S14-S18).
Supplementary Table S4. Performance of model when using
previously identified highly-ranked signals as a single predictor.
Supplementary Table S5. Model performance of single fea-
tures as sole predictors on unseen data. A total of
15 Xenorhabdus (X) and 14 Photorhabdus (P) were grown
in triplicate and their metabolites extracted as described in
the Methods. Listed are percentages representing how often
the correct genus was called. Probabilities for calling each
sample can be seen in Supplementary Table S6.
Supplementary Table S6. Probabilities of calling each
sample using data unseen during model creation. In each
case the value represents the probability of the sample
being Xenorhabdus.
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